Simulations of biomolecules: characterization of the early steps in the pH-induced conformational conversion of the hamster, bovine and human forms of the prion protein

被引:45
作者
Alonso, DOV [1 ]
An, C [1 ]
Daggett, V [1 ]
机构
[1] Univ Washington, Dept Med Chem, Seattle, WA 98195 USA
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2002年 / 360卷 / 1795期
关键词
protein misfolding; molecular dynamics; bovine spongiform encephalopathy; prion protein;
D O I
10.1098/rsta.2002.0986
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As computer power increases, so too does the range of interesting biomolecular phenomena and properties that can be simulated. It is now possible to simulate complicated protein conformational changes at ambient or physiological temperatures. In this regard, we are attempting to map the conformational. transitions of the normal, cellular prion protein (PrPC) to its infectious scrapie isoform (PrPSc), which causes neurodegenerative diseases in many mammals. These two forms have identical sequences and are conformational isomers, with heightened formation of beta-sheet structure in the scrapie form. Conversion can be triggered by lowering the pH, but thus far it has been impossible to characterize the conformational change at high resolution using experimental methods. Therefore, to investigate the effect of acidic pH on PrP conformation, we have performed molecular-dynamics simulations of hamster, human and bovine forms of the prion protein in water at neutral and low pH. In all cases the core of the protein is well maintained at neutral pH. At low pH, however, the protein is more dynamic, and the sheet-like structure increases both by lengthening of the native beta-sheet and by addition of a portion of the N-terminus to widen the sheet by another 2-3 strands.
引用
收藏
页码:1165 / 1178
页数:14
相关论文
共 55 条
[1]   Mapping the early steps in the pH-induced conformational conversion of the prion protein [J].
Alonso, DOV ;
DeArmond, SJ ;
Cohen, FE ;
Daggett, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (06) :2985-2989
[2]   Staphylococcal protein A: Unfolding pathways, unfolded states, and differences between the B and E domains [J].
Alonso, DOV ;
Daggett, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :133-138
[3]  
Alonso DOV, 2001, ADV PROTEIN CHEM, V57, P107
[4]   The caveolae membrane system [J].
Anderson, RGW .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :199-225
[5]   Self-assembly of recombinant prion protein of 106 residues [J].
Baskakov, IV ;
Aagaard, C ;
Mehlhorn, I ;
Wille, H ;
Groth, D ;
Baldwin, MA ;
Prusiner, SB ;
Cohen, FE .
BIOCHEMISTRY, 2000, 39 (10) :2792-2804
[6]   SCRAPIE AND CELLULAR PRP ISOFORMS ARE ENCODED BY THE SAME CHROMOSOMAL GENE [J].
BASLER, K ;
OESCH, B ;
SCOTT, M ;
WESTAWAY, D ;
WALCHLI, M ;
GROTH, DF ;
MCKINLEY, MP ;
PRUSINER, SB ;
WEISSMANN, C .
CELL, 1986, 46 (03) :417-428
[7]   Characterization of residual structure in the thermally denatured state of barnase by simulation and experiment: Description of the folding pathway [J].
Bond, CJ ;
Wong, KB ;
Clarke, J ;
Fersht, AR ;
Daggett, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (25) :13409-13413
[8]  
BORCHELT DR, 1992, J BIOL CHEM, V267, P16188
[9]  
CAUGHEY B, 1991, J BIOL CHEM, V266, P18217
[10]   N-TERMINAL TRUNCATION OF THE SCRAPIE-ASSOCIATED FORM OF PRP BY LYSOSOMAL PROTEASE(S) - IMPLICATIONS REGARDING THE SITE OF CONVERSION OF PRP TO THE PROTEASE-RESISTANT STATE [J].
CAUGHEY, B ;
RAYMOND, GJ ;
ERNST, D ;
RACE, RE .
JOURNAL OF VIROLOGY, 1991, 65 (12) :6597-6603