The Zagros folded belt (Fars, Iran): constraints from topography and critical wedge modelling

被引:132
作者
Mouthereau, F. [1 ]
Lacombe, O. [1 ]
Meyer, B. [1 ]
机构
[1] UPMC, UMR7072, Lab Tecton, F-75252 Paris 05, France
关键词
mountain building; topography; Zagros;
D O I
10.1111/j.1365-246X.2006.02855.x
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Late Miocene tectonics of the Zagros folded belt (Fars province) has for long been related solely to folding of the cover controlled by a ductile decollement between basement and the sedimentary cover. However, geological constraints, topography analysis and seismotectonic studies reveal that basement thrusting may produce locally significant deformation in the cover. To determine how the deep-seated deformation in the basement may contribute to the overall topography we first examine the filtered large and short wavelengths of the topography. We find that the short-wavelength component of the topography (20-25 km), including the Zagros folds, is superimposed on the differential uplift at the regional scale. In other words, the regional base level of folded marker horizons remains parallel to the regional topography of interest. Modelling reveals that the salt-based wedge model, alone, is not able to reproduce the large-wavelength component of the topography of the Zagros Folded Belt. This reveals that when a thick (relatively to its overburden) layer of salt forms the basal decollement it is generally too weak and cannot support the growth of significant topography. We then test an alternative thick-skinned crustal wedge model involving the crust of the Arabian margin, which is decoupled above a viscous lower crust. This model satisfactorily reproduces the observed topography and is consistent with present-day basement thrusting, topography analyses and geological constraints. We conclude that basement-involved thickening and shortening is mechanically required to produce the shape of the Zagros Folded Belt since at least 10 Ma. Finally, the involvement of the basement provides mechanical and kinematic constraints that should be accounted for cross-sections balancing and further assessing the evolution of Zagros at crustal or lithospheric scales.
引用
收藏
页码:336 / 356
页数:21
相关论文
共 66 条
[1]  
[Anonymous], 1990, GEOLOGICAL SOC AM ME
[2]   Effect of spatial distribution of Hormuz salt on deformation style in the Zagros fold and thrust belt: an analogue modelling approach [J].
Bahroudi, A ;
Koyi, HA .
JOURNAL OF THE GEOLOGICAL SOCIETY, 2003, 160 :719-733
[3]   MASTER BLIND THRUST FAULTS HIDDEN UNDER THE ZAGROS FOLDS - ACTIVE BASEMENT TECTONICS AND SURFACE MORPHOTECTONICS [J].
BERBERIAN, M .
TECTONOPHYSICS, 1995, 241 (3-4) :193-224
[4]   TOWARDS A PALEOGEOGRAPHY AND TECTONIC EVOLUTION OF IRAN [J].
BERBERIAN, M ;
KING, GCP .
CANADIAN JOURNAL OF EARTH SCIENCES, 1981, 18 (02) :210-265
[5]   Structural styles in the Zagros Simple Folded Zone, Iran [J].
Blanc, EJP ;
Allen, MB ;
Inger, S ;
Hassani, H .
JOURNAL OF THE GEOLOGICAL SOCIETY, 2003, 160 :401-412
[6]   LIMITS ON LITHOSPHERIC STRESS IMPOSED BY LABORATORY EXPERIMENTS [J].
BRACE, WF ;
KOHLSTEDT, DL .
JOURNAL OF GEOPHYSICAL RESEARCH, 1980, 85 (NB11) :6248-6252
[7]   Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: Implications for crustal strength [J].
Brudy, M ;
Zoback, MD ;
Fuchs, K ;
Rummel, F ;
Baumgartner, J .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1997, 102 (B8) :18453-18475
[8]   THE EFFECTIVE ELASTIC THICKNESS (T-E) OF CONTINENTAL LITHOSPHERE - WHAT DOES IT REALLY MEAN [J].
BUROV, EB ;
DIAMENT, M .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1995, 100 (B3) :3905-3927
[9]   FRICTION OF ROCKS [J].
BYERLEE, J .
PURE AND APPLIED GEOPHYSICS, 1978, 116 (4-5) :615-626
[10]  
CHAPPLE WM, 1978, GEOL SOC AM BULL, V89, P1189, DOI 10.1130/0016-7606(1978)89<1189:MOTFB>2.0.CO