共 81 条
Dopamine toxicity involves mitochondrial complex I inhibition: implications to dopamine-related neuropsychiatric disorders
被引:110
作者:
Ben-Shachar, D
[1
]
Zuk, R
[1
]
Gazawi, H
[1
]
Ljubuncic, P
[1
]
机构:
[1] Technion ITT, Res Lab Psychobiol, Dept Psychiat, Bruce Rappaport Fac Med,Rambam Med Ctr, Haifa, Israel
关键词:
dopamine;
brain mitochondria;
complex I;
neurotoxicity;
Parkinson's disease;
schizophrenia;
D O I:
10.1016/j.bcp.2004.02.015
中图分类号:
R9 [药学];
学科分类号:
1007 ;
摘要:
Dopamine, which is suggested as a prominent etiological factor in several neuropsychiatric disorders such as Parkinson's disease and schizophrenia, demonstrates neurotoxic properties. In such dopamine-related diseases mitochondrial dysfunction has been reported. Dopamine oxidized metabolites were shown to inhibit the mitochondrial respiratory system both in vivo and in vitro. In the present study, we suggest an additional mechanism for doparnine toxicity, which involves mitochondrial complex I inhibition by dopamine. In human neuroblastoma SH-SY5Y cells dopamine induced a reduction in ATP concentrations, which was negatively correlated to intracellular doparnine levels (r = -0.96, P = 0.012), and was already evident at non-toxic dopamine doses. In disrupted mitochondria doparnine inhibited complex I activity with IC50 = 11.87 +/- 1.45 muM or 8.12 +/- 0.75 muM in the presence of CoQ or ferricyanide, respectively, with no effect on complexes IV and Vactivities. The catechol moiety, but not the amine group, of dopamine is essential for complex I inhibition, as is indicated by comparing the inhibitory potential of functionally and structurally dopamine-related compounds. In line with the latter is the finding that chelatable FeCl2 prevented dopamine-induced inhibition of complex I. Monoamine oxidase A and B inhibitors, as well as the antioxidant butylated hydroxytoluene (BHT), did not prevent dopamine-induced inhibition, suggesting that dopamine oxidation was not involved in this process. The present study suggests that dopamine toxicity involves, or is initiated by, its interaction with the mitochondrial oxidative phosphorylation system. We further hypothesize that this interaction between doparnine and mitochondria is associated with mitochondrial dysfunction observed in dopamine-related neuropsychiatric disorders, such as schizophrenia and Parkinson's disease. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1965 / 1974
页数:10
相关论文