Systems with multiplicative noise: Critical behavior from KPZ equation and numerics

被引:81
作者
Tu, YH
Grinstein, G
Munoz, MA
机构
[1] IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY, 10598
关键词
D O I
10.1103/PhysRevLett.78.274
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that certain critical exponents of systems with multiplicative noise can be obtained from exponents of the KPZ equation. Numerical simulations in 1D confirm this prediction and yield other exponents of the multiplicative noise problem. The numerics also verify an earlier prediction of the divergence of the susceptibility over an entire range of control parameter values and show that the exponent governing the divergence in this range varies continuously with control parameter.
引用
收藏
页码:274 / 277
页数:4
相关论文
共 18 条
[1]  
DEUTSHER G, 1980, PERCOLATION STRUCTUR, V5
[2]   NUMERICAL STUDY OF A FIELD-THEORY FOR DIRECTED PERCOLATION [J].
DICKMAN, R .
PHYSICAL REVIEW E, 1994, 50 (06) :4404-4409
[3]   EXACT DYNAMIC EXPONENT AT THE KARDAR-PARISI-ZHANG ROUGHENING TRANSITION [J].
DOTY, CA ;
KOSTERLITZ, JM .
PHYSICAL REVIEW LETTERS, 1992, 69 (13) :1979-1981
[4]   2-LOOP RENORMALIZATION-GROUP ANALYSIS OF THE BURGERS-KARDAR-PARISI-ZHANG EQUATION [J].
FREY, E ;
TAUBER, UC .
PHYSICAL REVIEW E, 1994, 50 (02) :1024-1045
[5]   CARLEMAN IMBEDDING OF MULTIPLICATIVE STOCHASTIC-PROCESSES [J].
GRAHAM, R ;
SCHENZLE, A .
PHYSICAL REVIEW A, 1982, 25 (03) :1731-1754
[6]  
GRASSBERGER P, IN PRESS
[7]  
GRASSBERGER P, UNPUB
[8]   Phase structure of systems with multiplicative noise [J].
Grinstein, G ;
Munoz, MA ;
Tu, YH .
PHYSICAL REVIEW LETTERS, 1996, 76 (23) :4376-4379
[9]  
Horsthemke W., 1984, Noise-Induced Transitions. Theory and Applications in Physics, Chemistry and Biology
[10]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892