Efficient estimation in nonlinear autoregressive time-series models

被引:56
作者
Koul, HL
Schick, A
机构
[1] SUNY BINGHAMTON,DEPT MATH SCI,BINGHAMTON,NY 13902
[2] MICHIGAN STATE UNIV,DEPT STAT & PROBABIL,E LANSING,MI 48824
基金
美国国家科学基金会;
关键词
adaptivity; ergodicity; local asymptotic normality; semi-parametric time series; stationarity;
D O I
10.2307/3318592
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper discusses efficient estimation for a class of nonlinear time-series models with unknown error densities. It establishes local asymptotic normality in this semi-parametric setting. This is then used to describe efficient estimates and to discuss the question of adaptation. Stein's necessary condition for adaptive estimation is satisfied if the error densities are symmetric, but is also satisfied in some models with asymmetric error densities. The paper gives several methods of constructing efficient estimates. These results are then applied to construct efficient estimators in SETAR(2; 1, 1), EXPAR(1) and ARMA(1, 1) models. We observe that adaptation is not possible in the SETAR(2; 1, 1) model with asymmetric errors while the efficient estimators in the ARMA(1, 1) model are adaptive even for asymmetric error densities. Section 8 contains a result that is useful in verifying the continuity of the stationary density with respect to the underlying parameters.
引用
收藏
页码:247 / 277
页数:31
相关论文
共 24 条
[1]   A MULTIPLE-THRESHOLD AR(1) MODEL [J].
CHAN, KS ;
PETRUCCELLI, JD ;
TONG, H ;
WOOLFORD, SW .
JOURNAL OF APPLIED PROBABILITY, 1985, 22 (02) :267-279
[2]   ON THE USE OF THE DETERMINISTIC LYAPUNOV FUNCTION FOR THE ERGODICITY OF STOCHASTIC DIFFERENCE-EQUATIONS [J].
CHAN, KS ;
TONG, H .
ADVANCES IN APPLIED PROBABILITY, 1985, 17 (03) :666-678
[3]   ON ESTIMATION AND ADAPTIVE ESTIMATION FOR LOCALLY ASYMPTOTICALLY NORMAL-FAMILIES [J].
FABIAN, V ;
HANNAN, J .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 59 (04) :459-478
[4]  
HWANG SY, 1993, STOCH PROC APPL, V46, P91
[5]   Some aspects of asymptotic theory with applications to time series models [J].
Jeganathan, P .
ECONOMETRIC THEORY, 1995, 11 (05) :818-887
[6]   CONDITIONAL LEAST-SQUARES ESTIMATION FOR STOCHASTIC-PROCESSES [J].
KLIMKO, LA ;
NELSON, PI .
ANNALS OF STATISTICS, 1978, 6 (03) :629-642
[7]   WEAKLY ADAPTIVE ESTIMATORS IN EXPLOSIVE AUTOREGRESSION [J].
KOUL, HL ;
PFLUG, GC .
ANNALS OF STATISTICS, 1990, 18 (02) :939-960
[8]   ON ADAPTIVE ESTIMATION IN STATIONARY ARMA PROCESSES [J].
KREISS, JP .
ANNALS OF STATISTICS, 1987, 15 (01) :112-133
[9]  
KREISS JP, 1987, STATIST DECISIONS, V5, P59, DOI DOI 10.1524/STRM.1987.5.12.59
[10]  
LE CAM L., 1960, Univ. California Publ. Statist., V3, P37