Glutaconate CoA-transferase from Acidaminococcus fermentans: The crystal structure reveals homology with other CoA-transferases

被引:69
作者
Jacob, U [1 ]
Mack, M [1 ]
Clausen, T [1 ]
Huber, R [1 ]
Buckel, W [1 ]
Messerschmidt, A [1 ]
机构
[1] UNIV MARBURG,MIKROBIOL LAB,FACHBEREICH BIOL,D-35032 MARBURG,GERMANY
关键词
coenzyme A; crystal structure; fermentation; glutamate; transferase;
D O I
10.1016/S0969-2126(97)00198-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Coenzyme A-transferases are a family of enzymes with a diverse substrate specificity and subunit composition. Members of this group of enzymes are found in anaerobic fermenting bacteria, aerobic bacteria and in the mitochondria of humans and other mammals, but so far none have been crystallized. A defect in the human gene encoding succinyl-CoA:3-oxoacid CoA-transferase causes a metabolic disease which leads to severe ketoacidosis, thus reflecting the importance of this family of enzymes. All CoA-transferases share a common mechanism in which the CoA moiety is transferred from a donor (e.g. acetyl CoA) to an acceptor, (R)-2-hydroxyglutarate, whereby acetate is formed. The transfer has been described by a ping-pong mechanism in which CoA is bound to the active-site residue of the enzyme as a covalent thiol ester intermediate. We describe here the crystal structure of glutaconate CoA-transferase (GCT) from the strictly anaerobic bacterium Acidaminococcus fermentans. This enzyme activates (R)-2-hydroxyglutarate to (R)-2-hydroxyglutaryl-CoA in the pathway of glutamate fermentation. We initiated this project to gain further insight into the function of this enzyme and the structural basis for the characteristics of CoA-transferases. Results: The crystal structure of GCT was solved by multiple isomorphous replacement to 2.55 Angstrom resolution. The enzyme is a heterooctamer and its overall arrangement of subunits can be regarded as an (AB)(4) tetramer obeying 222 symmetry. Both subunits A and B belong to the open alpha/beta-protein class and can be described as a four-layered alpha/alpha/beta/alpha type with a novel composition and connectivity of the secondary structure elements. The core of subunit A consists of seven alpha/beta repeats resulting in an all parallel central beta sheet, against which helices pack from both sides. In contrast, the centre of subunit B is formed by a ninefold mixed beta sheet. In both subunits the helical C terminus is folded back onto the N-terminal domain to form the third layer of helices. Conclusions: The active site of GCT is located at the interface of subunits A and B and is formed by loops of both subunits. The funnel-shaped opening to the active site has a depth and diameter of about 20 Angstrom with the catalytic residue, Glu54 of subunit B, at the bottom. The active-site glutamate residue is stabilized by hydrogen bonds. Despite very low amino acid sequence similarity, subunits A and B reveal a similar overall fold. Large parts of their structures can be spatially superimposed, suggesting that both subunits have evolved from a common ancestor.
引用
收藏
页码:415 / 426
页数:12
相关论文
共 47 条
[1]  
[Anonymous], ACTA CRYSTALLOGR D
[2]   PURIFICATION AND CHARACTERIZATION OF FORMYL-COENZYME-A TRANSFERASE FROM OXALOBACTER-FORMIGENES [J].
BAETZ, AL ;
ALLISON, MJ .
JOURNAL OF BACTERIOLOGY, 1990, 172 (07) :3537-3540
[3]  
BARKER HA, 1978, J BIOL CHEM, V253, P1219
[4]   ALSCRIPT - A TOOL TO FORMAT MULTIPLE SEQUENCE ALIGNMENTS [J].
BARTON, GJ .
PROTEIN ENGINEERING, 1993, 6 (01) :37-40
[5]  
BLAIR JB, 1969, J BIOL CHEM, V244, P951
[6]  
BRUNGER AT, 1992, X PLOR VERSION 3 1
[7]   ENZYME COMPLEX CITRAMALATE LYASE FROM CLOSTRIDIUM-TETANOMORPHUM [J].
BUCKEL, W ;
BOBI, A .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1976, 64 (01) :255-262
[8]   GLUTACONATE COA-TRANSFERASE FROM ACIDAMINOCOCCUS-FERMENTANS [J].
BUCKEL, W ;
DORN, U ;
SEMMLER, R .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1981, 118 (02) :315-321
[9]   ACETIC-ANHYDRIDE - INTERMEDIATE ANALOG IN ACYL-EXCHANGE REACTION OF CITRAMALATE LYASE [J].
BUCKEL, W .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1976, 64 (01) :263-267
[10]   2 PATHWAYS OF GLUTAMATE FERMENTATION BY ANAEROBIC BACTERIA [J].
BUCKEL, W ;
BARKER, HA .
JOURNAL OF BACTERIOLOGY, 1974, 117 (03) :1248-1260