A Liouville-operator derived. measure-preserving integrator for molecular dynamics simulations in the isothermal-isobaric ensemble

被引:482
作者
Tuckerman, Mark E. [1 ]
Alejandre, Jose
Lopez-Rendon, Roberto
Jochim, Andrea L.
Martyna, Glenn J.
机构
[1] Univ Calif Los Angeles, IPAM, Los Angeles, CA 90095 USA
[2] NYU, Dept Chem, New York, NY 10003 USA
[3] NYU, Courant Inst Math Sci, New York, NY 10003 USA
[4] Univ Autonoma Metropolitana Iztapalapa, Dept Quim, Mexico City 09340, DF, Mexico
[5] IBM TJ Watson Res Ctr, Div Phys Sci, Yorktown Hts, NY 10598 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 19期
关键词
D O I
10.1088/0305-4470/39/19/S18
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The constant-pressure, constant-temperature (NPT) molecular dynamics approach is re-examined from the viewpoint of deriving a new measure-preserving reversible geometric integrator for the equations of motion. The underlying concepts of non-Hamiltonian phase-space analysis, measure-preserving integrators and the symplectic property for Hamiltonian systems are briefly reviewed. In addition, current measure-preserving schemes for the constant-volume, constant-temperature ensemble are also reviewed. A new geometric integrator for the NPT method is presented, is shown to preserve the correct phase-space volume element and is demonstrated to perform well in realistic examples. Finally, a multiple time-step version of the integrator is presented for treating systems with motion on several time scales.
引用
收藏
页码:5629 / 5651
页数:23
相关论文
共 43 条
[1]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[2]   NOTE CONCERNING THE PAPER THE RATE OF ENTROPY CHANGE IN NON-HAMILTONIAN SYSTEMS [J].
ANDREY, L .
PHYSICS LETTERS A, 1986, 114 (04) :183-184
[3]   The Nose-Poincare method for constant temperature molecular dynamics [J].
Bond, SD ;
Leimkuhler, BJ ;
Laird, BB .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 151 (01) :114-134
[4]  
CALVO MP, 1994, NUMERICAL HAMILTONIA
[5]   HIGHER-ORDER HYBRID MONTE-CARLO ALGORITHMS [J].
CREUTZ, M ;
GOCKSCH, A .
PHYSICAL REVIEW LETTERS, 1989, 63 (01) :9-12
[6]  
Dubrovin B. A., 1985, GRADUATE TEXTS MATH
[7]  
Dubrovin B. A., 1985, MODERN GEOMETRY ME 1
[8]   Monitoring energy drift with shadow Hamiltonians [J].
Engle, RD ;
Skeel, RD ;
Drees, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 206 (02) :432-452
[9]   CONSTANT-PRESSURE EQUATIONS OF MOTION [J].
HOOVER, WG .
PHYSICAL REVIEW A, 1986, 34 (03) :2499-2500
[10]   CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS [J].
HOOVER, WG .
PHYSICAL REVIEW A, 1985, 31 (03) :1695-1697