Gravitational Self-Force Correction to the Innermost Stable Circular Orbit of a Schwarzschild Black Hole

被引:135
作者
Barack, Leor [1 ]
Sago, Norichika [1 ,2 ]
机构
[1] Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
[2] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
关键词
RADIATION REACTION; MOTION;
D O I
10.1103/PhysRevLett.102.191101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The innermost stable circular orbit (ISCO) of a test particle around a Schwarzschild black hole of mass M has (areal) radius r(isco)=6MG/c(2). If the particle is endowed with mass mu(< M), it experiences a gravitational self-force whose conservative piece alters the location of the ISCO. Here we calculate the resulting shifts Delta r(isco) and Delta Omega(isco) in the ISCO's radius and frequency, at leading order in the mass ratio mu/M. We obtain, in the Lorenz gauge, Delta r(isco)=-3.269(+/- 0.003)mu G/c(2) and Delta Omega(isco)/Omega(isco)=0.4870(+/- 0.0006)mu/M. We discuss the implications of our result within the context of the extreme-mass-ratio binary inspiral problem.
引用
收藏
页数:4
相关论文
共 28 条
[1]   Kludge gravitational waveforms for a test-body orbiting a Kerr black hole [J].
Babak, Stanislav ;
Fang, Hua ;
Gair, Jonathan R. ;
Glampedakis, Kostas ;
Hughes, Scott A. .
PHYSICAL REVIEW D, 2007, 75 (02)
[2]   Gravitational-wave extraction from an inspiraling configuration of merging black holes [J].
Baker, JG ;
Centrella, J ;
Choi, DI ;
Koppitz, M ;
van Meter, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[3]   LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy [J].
Barack, L ;
Cutler, C .
PHYSICAL REVIEW D, 2004, 69 (08) :24
[4]   Mode sum regularization approach for the self-force in black hole spacetime [J].
Barack, L ;
Ori, A .
PHYSICAL REVIEW D, 2000, 61 (06)
[5]   Computing the gravitational self-force on a compact object plunging into a Schwarzschild black hole [J].
Barack, L ;
Lousto, CO .
PHYSICAL REVIEW D, 2002, 66 (06)
[6]   Calculating the gravitational self-force in Schwarzschild spacetime [J].
Barack, L ;
Mino, Y ;
Nakano, H ;
Ori, A ;
Sasaki, M .
PHYSICAL REVIEW LETTERS, 2002, 88 (09) :911011-911014
[7]   Gravitational self-force and gauge transformations [J].
Barack, L ;
Ori, A .
PHYSICAL REVIEW D, 2001, 64 (12)
[8]  
BARACK L, IN PRESS
[9]   Gravitational self-force on a particle in circular orbit around a Schwarzschild black hole [J].
Barack, Leor ;
Sago, Norichika .
PHYSICAL REVIEW D, 2007, 75 (06)
[10]   Third post-Newtonian dynamics of compact binaries: equations of motion in the centre-of-mass frame [J].
Blanchet, L ;
Iyer, BR .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (04) :755-776