Crystal Structure of Marburg Virus VP40 Reveals a Broad, Basic Patch for Matrix Assembly and a Requirement of the N-Terminal Domain for Immunosuppression

被引:32
作者
Oda, Shun-ichiro [1 ]
Noda, Takeshi [2 ]
Wijesinghe, Kaveesha J. [3 ,4 ]
Halfmann, Peter [5 ]
Bornholdt, Zachary A. [1 ]
Abelson, Dafna M. [1 ]
Armbrust, Tammy [5 ]
Stahelin, Robert V. [3 ,4 ,6 ]
Kawaoka, Yoshihiro [2 ,5 ,7 ]
Saphire, Erica Ollmann [1 ,8 ]
机构
[1] Scripps Res Inst, Dept Immunol & Microbial Sci, La Jolla, CA 92037 USA
[2] Univ Tokyo, Inst Med Sci, Int Res Ctr Infect Dis, Tokyo, Japan
[3] Univ Notre Dame, Eck Inst Global Hlth, Dept Chem & Biochem, Notre Dame, IN 46556 USA
[4] Univ Notre Dame, Boler Parsegh Ctr Rare & Neglected Dis, Notre Dame, IN 46556 USA
[5] Univ Wisconsin, Sch Vet Med, Dept Pathobiol Sci, Madison, WI 53706 USA
[6] Indiana Univ Sch Med, Dept Biochem & Mol Biol, South Bend, IN USA
[7] Univ Tokyo, Inst Med Sci, Dept Microbiol & Immunol, Div Virol, Tokyo, Japan
[8] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
基金
日本科学技术振兴机构; 日本学术振兴会; 美国国家卫生研究院;
关键词
BINDING-PROPERTIES; PROTEIN; MEMBRANES; KARYOPHERIN; STAT1; SEQUENCE; RNA;
D O I
10.1128/JVI.01597-15
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Marburg virus (MARV), a member of the filovirus family, causes severe hemorrhagic fever with up to 90% lethality. MARV matrix protein VP40 is essential for assembly and release of newly copied viruses and also suppresses immune signaling in the infected cell. Here we report the crystal structure of MARV VP40. We found that MARV VP40 forms a dimer in solution, mediated by N-terminal domains, and that formation of this dimer is essential for budding of virus-like particles. We also found the N-terminal domain to be necessary and sufficient for immune antagonism. The C-terminal domains of MARV VP40 are dispensable for immunosuppression but are required for virus assembly. The C-terminal domains are only 16% identical to those of Ebola virus, differ in structure from those of Ebola virus, and form a distinct broad and flat cationic surface that likely interacts with the cell membrane during virus assembly.
引用
收藏
页码:1839 / 1848
页数:10
相关论文
共 42 条
[1]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[2]   NEGATIVE STAINING OF PHOSPHOLIPIDS + THEIR STRUCTURAL MODIFICATION BY-SURFACE ACTIVE AGENTS AS OBSERVED IN ELECTRON MICROSCOPE [J].
BANGHAM, AD ;
HORNE, RW .
JOURNAL OF MOLECULAR BIOLOGY, 1964, 8 (05) :660-&
[3]   Structural Rearrangement of Ebola Virus VP40 Begets Multiple Functions in the Virus Life Cycle [J].
Bornholdt, Zachary A. ;
Noda, Takeshi ;
Abelson, Dafna M. ;
Halfmann, Peter ;
Wood, Malcolm R. ;
Kawaoka, Yoshihiro ;
Saphire, Erica Ollmann .
CELL, 2013, 154 (04) :763-774
[4]  
Brauburger K, 2012, VIRUSES 1001
[5]  
Collaborative Computational Project, 1994, ACTA CRYSTALLOGR D, V50, P760, DOI DOI 10.1107/S0907444994003112
[6]  
Cowtan K., 1994, JOINT CCP4 ESF EACBM, V31, P34
[7]   The Buccaneer software for automated model building.: 1.: Tracing protein chains [J].
Cowtan, Kevin .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2006, 62 :1002-1011
[8]   Coot:: model-building tools for molecular graphics [J].
Emsley, P ;
Cowtan, K .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 :2126-2132
[9]   The matrix protein VP40 from Ebola virus octamerizes into pore-like structures with specific RNA binding properties [J].
Gomis-Roth, FX ;
Dessen, A ;
Timmins, J ;
Bracher, A ;
Kolesnikowa, L ;
Becker, S ;
Klenk, HD ;
Weissenhorn, W .
STRUCTURE, 2003, 11 (04) :423-433
[10]   ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins [J].
Gouet, P ;
Robert, X ;
Courcelle, E .
NUCLEIC ACIDS RESEARCH, 2003, 31 (13) :3320-3323