Diamond photonic band gap synthesis by umbrella holographic lithography

被引:38
作者
Toader, Ovidiu [1 ]
Chan, Timothy Y. M. [1 ]
John, Sajeev [1 ]
机构
[1] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
关键词
D O I
10.1063/1.2347112
中图分类号
O59 [应用物理学];
学科分类号
摘要
The authors demonstrate that optical interference lithography yields diamond photonic band gap (PBG) architectures with PBGs as large as 25% when the exposed photoresist is replicated with silicon. This process utilizes five linearly polarized beams propagating from the same half-space (umbrella configuration), a setup considerably simpler than the widely studied counterpropagating four-beam setup. Using the umbrella configuration, this diamond structure is also achieved by two or more exposures using fewer interfering laser beams. (c) 2006 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 10 条
[1]   Fabrication of photonic crystals for the visible spectrum by holographic lithography [J].
Campbell, M ;
Sharp, DN ;
Harrison, MT ;
Denning, RG ;
Turberfield, AJ .
NATURE, 2000, 404 (6773) :53-56
[2]   Photonic band gap templating using optical interference lithography [J].
Chan, TYM ;
Toader, O ;
John, S .
PHYSICAL REVIEW E, 2005, 71 (04)
[3]   Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography [J].
Divliansky, I ;
Mayer, TS ;
Holliday, KS ;
Crespi, VH .
APPLIED PHYSICS LETTERS, 2003, 82 (11) :1667-1669
[4]   Three-dimensional photonic crystals by holographic lithography using the umbrella configuration: Symmetries and complete photonic band gaps [J].
Meisel, DC ;
Wegener, M ;
Busch, K .
PHYSICAL REVIEW B, 2004, 70 (16) :1-10
[5]   Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations [J].
Miklyaev, YV ;
Meisel, DC ;
Blanco, A ;
von Freymann, G ;
Busch, K ;
Koch, W ;
Enkrich, C ;
Deubel, M ;
Wegener, M .
APPLIED PHYSICS LETTERS, 2003, 82 (08) :1284-1286
[6]   Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin [J].
Shoji, S ;
Kawata, S .
APPLIED PHYSICS LETTERS, 2000, 76 (19) :2668-2670
[7]   New route to three-dimensional photonic bandgap materials:: Silicon double inversion of polymer templates [J].
Tétreault, N ;
von Freymann, G ;
Deubel, M ;
Hermatschweiler, M ;
Pérez-Willard, F ;
John, S ;
Wegener, M ;
Ozin, GA .
ADVANCED MATERIALS, 2006, 18 (04) :457-+
[8]   Photonic band gap architectures for holographic lithography [J].
Toader, O ;
Chan, TYM ;
John, S .
PHYSICAL REVIEW LETTERS, 2004, 92 (04) :4
[9]   Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures [J].
Ullal, CK ;
Maldovan, M ;
Thomas, EL ;
Chen, G ;
Han, YJ ;
Yang, S .
APPLIED PHYSICS LETTERS, 2004, 84 (26) :5434-5436
[10]   Three-dimensional photonic crystals fabricated by visible light holographic lithography [J].
Wang, X ;
Xu, JF ;
Su, HM ;
Zeng, ZH ;
Chen, YL ;
Wang, HZ ;
Pang, YK ;
Tam, WY .
APPLIED PHYSICS LETTERS, 2003, 82 (14) :2212-2214