Number fluctuations and the threshold model of kinetic switches

被引:18
作者
Metzler, R
Wolynes, PG
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] NORDITA, DK-2100 Copenhagen O, Denmark
[3] Univ Calif San Diego, Dept Chem, La Jolla, CA 92093 USA
关键词
D O I
10.1016/S0301-0104(02)00674-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The dynamics within nanoscale systems, in biological cells, or in macroscopic ecosystems often involves low populations of molecules or members, provoking the need for a discrete description instead of a continuum theory. We consider a classical birth-immigration-death process in such a few number system and show in how far fluctuations become prominent in the system's dynamics. The exact analytical results are investigated and new functions for the characterisation of the population dynamics established. We investigate the corresponding continuum approximation of the process and derive a Fokker-Planck equation for the fluctuations. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:469 / 479
页数:11
相关论文
共 26 条
[1]  
[Anonymous], 1974, Stochastic Models in Biology
[2]  
[Anonymous], MATH PHYSL
[3]  
Arkin A, 1998, GENETICS, V149, P1633
[4]  
AURELL E, CONDMAT0010286
[5]  
Bailey N. T. J., 1964, ELEMENTS STOCHASTIC
[6]  
BIALEK W, CONDMAT0005235
[7]  
COOK DL, 1998, P NATL ACAD SCI USA, V95, P6750
[8]  
Cox DR., 1965, The Theory of Stochastic Proceesses, DOI DOI 10.1016/J.PHYSA.2011
[9]   DIFFUSION IN REGULAR AND DISORDERED LATTICES [J].
HAUS, JW ;
KEHR, KW .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 150 (5-6) :263-406
[10]  
Karlin Samuel, 1957, T AM MATH SOC, V86, P366, DOI 10.1090/S0002-9947-1957-0094854-8