Statistical structuring of pictorial databases for content-based image retrieval systems

被引:9
作者
Pun, T
Squire, D
机构
[1] Computer Science Department, University of Geneva, CH-1211 Geneva 4
关键词
image databases; content-based image retrieval systems; exploratory statistics; correspondence analysis; ascendant hierarchical classification;
D O I
10.1016/0167-8655(96)84923-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This letter presents a two-stage statistical approach for ''exploring and explaining'' a pictorial database, for content-based image retrieval systems. First, we describe how correspondence analysis provides image classes, as well as facilitates the understanding of the role of image primitives and attributes used to index pictures. Such understanding allows an intelligent choice of features, and thus computational savings, to be made. Second, ascendent hierarchical classification permits the structuring of the database, in order to ease picture indexing and retrieval.
引用
收藏
页码:1299 / 1310
页数:12
相关论文
共 15 条
[1]  
Benzecri JP., 1973, ANAL DONNEES, V2
[2]  
BHANU B, 1994, IEEE T PATTERN ANAL, V16, P865
[3]  
CHEN CH, 1993, HDB PATTERN RECOGNIT
[4]  
Diday E., 1981, Digital Image Processing. Proceedings of the NATO Advanced Study Institute, P19
[5]  
Diday E., 1991, SYMBOLIC NUMERIC DAT
[6]  
FLICKNER M, 1995, IEEE COMPUT, V28, P23, DOI DOI 10.1109/2.410146
[7]   DETECTION OF REGIONS MATCHING SPECIFIED CHROMATIC FEATURES [J].
GONG, YH ;
SAKAUCHI, M .
COMPUTER VISION AND IMAGE UNDERSTANDING, 1995, 61 (02) :263-269
[8]  
GUDIVADA VN, 1995, IEEE COMPUT SEP
[9]  
Jambu M., 1991, EXPLORATORY MULTIVAR
[10]  
KATO T, 1992, P SOC PHOTO-OPT INS, V1662, P112, DOI 10.1117/12.58497