Elliptic problems with nonlinearities indefinite in sign

被引:142
作者
Alama, S [1 ]
Tarantello, G [1 ]
机构
[1] UNIV ROMA TOR VERGATA,DIPARTIMENTO MATEMAT,I-00133 ROME,ITALY
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/jfan.1996.0125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega subset of R(N), N greater than or equal to 3, be a bounded open set with smooth boundary and lambda is an element of R. We study the Dirichlet problem, [GRAPHICS] with 1<q<p and h, k is an element of L(infinity)(Omega) nonnegative functions. We prove existence, non-existence and multiplicity results depending on lambda and according to the integrability properties of the ratio k(p-1)/h(q-1). (C) 1996 Academic Press, Inc.
引用
收藏
页码:159 / 215
页数:57
相关论文
共 16 条
[1]   ON SEMILINEAR ELLIPTIC-EQUATIONS WITH INDEFINITE NONLINEARITIES [J].
ALAMA, S ;
TARANTELLO, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (04) :439-475
[2]  
ALAMA S, IN PRESS C R ACAD 1
[3]  
ALAMA S, IN PRESS MATH Z
[4]  
[Anonymous], J FUNCT ANAL
[5]  
BREZIS H, 1993, CR ACAD SCI I-MATH, V317, P465
[6]   REMARKS ON SUBLINEAR ELLIPTIC-EQUATIONS [J].
BREZIS, H ;
OSWALD, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (01) :55-64
[7]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137
[8]  
CRANDALL M, 1973, ARCH RATIONAL MECH A, V56, P161
[9]  
DELPINO M, 1992, POSITIVE SOLUTIONS S
[10]  
GEZTESY F, 1988, COMMUN MATH PHYS, V118, P597