Transcriptional repression of PGC-α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration

被引:813
作者
Cui, Libin [1 ]
Jeong, Hyunkyung
Borovecki, Fran
Parkhurst, Christopher N.
Tanese, Naoko
Krainc, Dimitri
机构
[1] Harvard Univ, Massachusetts Gen Hosp, Sch Med, MassGen Inst Neurodegenerat,Dept Neurol, Charlestown, MA 02129 USA
[2] NYU, Sch Med, Dept Microbiol, New York, NY 10016 USA
关键词
D O I
10.1016/j.cell.2006.09.015
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Huntington's disease (HID) is an inherited neurodegenerative disease caused by a glutamine repeat expansion in huntingtin protein. Transcriptional deregulation and altered energy metabolism have been implicated in HID pathogenesis. We report here that mutant huntingtin causes disruption of mitochondrial function by inhibiting expression of PGC-1 alpha, a transcriptional coactivator that regulates several metabolic processes, including mitochondrial biogenesis and respiration. Mutant huntingtin represses PGC-1 alpha gene transcription by associating with the promoter and interfering with the CREB/TAF4-dependent transcriptional pathway critical for the regulation of PGC-1 alpha gene expression. Crossbreeding of PGC-1 alpha knockout (KO) mice with HID knockin (KI) mice leads to increased neurodegeneration of striatal neurons and motor abnormalities in the HID mice. Importantly, expression of PGC-1 alpha partially reverses the toxic effects of mutant huntingtin in cultured striatal neurons. Moreover, lentiviral-mediated delivery of PGC-1 alpha in the striatum provides neuroprotection in the transgenic HID mice. These studies suggest a key role for PGC-1 alpha in the control of energy metabolism in the early stages of HID pathogenesis.
引用
收藏
页码:59 / 69
页数:11
相关论文
共 42 条
[1]   Comparative analysis of amino acid repeats in rodents and humans [J].
Albà, MM ;
Guigó, R .
GENOME RESEARCH, 2004, 14 (04) :549-554
[2]   Striatal glucose metabolism and dopamine D-2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease [J].
Antonini, A ;
Leenders, KL ;
Spiegel, R ;
Meier, D ;
Vontobel, P ;
WeigellWeber, M ;
SanchezPernaute, R ;
deYebenez, JG ;
Boesiger, P ;
Weindl, A ;
Maguire, RP .
BRAIN, 1996, 119 :2085-2095
[3]   Chromatin-dependent cooperativity between constitutive and inducible activation domains in CREB [J].
Asahara, H ;
Santoso, B ;
Guzman, E ;
Du, KY ;
Cole, PA ;
Davidson, I ;
Montminy, M .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (23) :7892-7900
[4]   The energetics of Huntington's disease [J].
Browne, SE ;
Beal, MF .
NEUROCHEMICAL RESEARCH, 2004, 29 (03) :531-546
[5]  
Brustovetsky N, 2003, J NEUROSCI, V23, P4858
[6]   Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release [J].
Choo, YS ;
Johnson, GVW ;
MacDonald, M ;
Detloff, PJ ;
Lesort, M .
HUMAN MOLECULAR GENETICS, 2004, 13 (14) :1407-1420
[7]   Characterization of a CREB gain-of-function mutant with constitutive transcriptional activity in vivo [J].
Du, KY ;
Asahara, H ;
Jhala, US ;
Wagner, BL ;
Montminy, M .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (12) :4320-4327
[8]   Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease [J].
Dunah, AW ;
Jeong, H ;
Griffin, A ;
Kim, YM ;
Standaert, DG ;
Hersch, SM ;
Mouradian, MM ;
Young, AB ;
Tanese, N ;
Krainc, D .
SCIENCE, 2002, 296 (5576) :2238-2243
[9]   Neuroprotective effects of creatine in a transgenic mouse model of Huntington's disease [J].
Ferrante, RJ ;
Andreassen, OA ;
Jenkins, BG ;
Dedeoglu, A ;
Kuemmerle, S ;
Kubilus, JK ;
Kaddurah-Daouk, R ;
Hersch, SM ;
Beal, MF .
JOURNAL OF NEUROSCIENCE, 2000, 20 (12) :4389-4397
[10]   SELECTIVE SPARING OF A CLASS OF STRIATAL NEURONS IN HUNTINGTONS-DISEASE [J].
FERRANTE, RJ ;
KOWALL, NW ;
BEAL, MF ;
RICHARDSON, EP ;
BIRD, ED ;
MARTIN, JB .
SCIENCE, 1985, 230 (4725) :561-563