Absence of self-averaging and universal fluctuations in random systems near critical points

被引:199
作者
Aharony, A [1 ]
Harris, AB [1 ]
机构
[1] UNIV PENN,DEPT PHYS & ASTRON,PHILADELPHIA,PA 19104
关键词
D O I
10.1103/PhysRevLett.77.3700
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The distributions P(X) of singular thermodynamic quantities, on an ensemble of d-dimensional quenched random samples of linear size L near a critical point, are analyzed using the renormalization group. For L much larger than the correlation length xi, we recover strong self-averaging (SA): P(X) approaches a Gaussian with relative squared width R(X) similar to (L/xi)(-d). For L much less than xi we show weak SA (R(X) decays with a small power of L) or no SA [P(X) approaches a non-Gaussian, with universal L-independent relative cumulants], when the randomness is irrelevant or relevant, respectively.
引用
收藏
页码:3700 / 3703
页数:4
相关论文
共 26 条
[1]  
AHARONY A, 1976, PHYS REV B, V13, P2092, DOI 10.1103/PhysRevB.13.2092
[2]  
AHARONY A, 1975, PHYS REV B, V12, P1038, DOI 10.1103/PhysRevB.12.1038
[3]   CROSSOVER FROM RANDOM EXCHANGE TO RANDOM FIELD CRITICAL-BEHAVIOR [J].
AHARONY, A .
EUROPHYSICS LETTERS, 1986, 1 (12) :617-621
[4]  
Aharony A., 1976, Phase Transitions and Critical Phenomena, V6, P357
[5]   SCALE-INVARIANT QUENCHED DISORDER AND ITS STABILITY-CRITERION AT RANDOM CRITICAL-POINTS [J].
ANDELMAN, D ;
BERKER, AN .
PHYSICAL REVIEW B, 1984, 29 (05) :2630-2635
[6]  
[Anonymous], SOV PHYS JETP
[7]   CRITICAL-BEHAVIOR OF A SITE-DILUTED 3-DIMENSIONAL ISING MAGNET [J].
BIRGENEAU, RJ ;
COWLEY, RA ;
SHIRANE, G ;
YOSHIZAWA, H ;
BELANGER, DP ;
KING, AR ;
JACCARINO, V .
PHYSICAL REVIEW B, 1983, 27 (11) :6747-6753
[8]   Effect of random impurities on fluctuation-driven first-order transitions [J].
Cardy, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (09) :1897-1904
[9]   FINITE-SIZE SCALING AND CORRELATION LENGTHS FOR DISORDERED-SYSTEMS [J].
CHAYES, JT ;
CHAYES, L ;
FISHER, DS ;
SPENCER, T .
PHYSICAL REVIEW LETTERS, 1986, 57 (24) :2999-3002
[10]   Critical behavior of the random-field Ising model [J].
Gofman, M ;
Adler, J ;
Aharony, A ;
Harris, AB ;
Schwartz, M .
PHYSICAL REVIEW B, 1996, 53 (10) :6362-6384