A new near-infrared coherent imaging technique that; can reveal scattering bodies embedded in highly scattering media is presented. Its underlying principle is extended from frequency modulated continuous wave radar systems. This technique has advantages over low coherence tomography as it does not require the reference mirror to be scanned. The tunable laser is characterized and the system's performance is demonstrated on images recorded from solid scattering phantoms. Furthermore a combination of our chirp-tomography (C-OCT) and laser Doppler perfusion imaging (LDPI) is demonstrated. The influence of moving scatterers on the tomographic images are discussed.