Mechanisms and kinetics of glycosaminoglycan release following in vitro cartilage injury

被引:85
作者
DiMicco, MA
Patwari, P
Siparsky, PN
Kumar, S
Pratta, MA
Lark, MW
Kim, YJ
Grodzinsky, AJ
机构
[1] MIT, Boston, MA USA
[2] Childrens Hosp, Boston, MA 02115 USA
[3] GlaxoSmithKline, King Of Prussia, PA USA
来源
ARTHRITIS AND RHEUMATISM | 2004年 / 50卷 / 03期
关键词
D O I
10.1002/art.20101
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective. Acute joint injury leads to increased risk for osteoarthritis (OA). Although the mechanisms underlying this progression are unclear, early structural, metabolic, and compositional indicators of OA have been reproduced using in vitro models of cartilage injury. This study was undertaken to determine whether glycosaminoglycan (GAG) loss following in vitro cartilage injury is mediated by cellular biosynthesis, activation of enzymatic activity, or mechanical disruption of the cartilage extracellular matrix. Methods. Immature bovine cartilage was cultured for up to 10 days. After 3 days, groups of samples were subjected to injurious mechanical compression (single uniaxial unconfined compression to 50% thickness, strain rate 100% per second). GAG release to the medium was measured, and levels were compared with those in location-matched, uninjured controls. The effects of medium supplementation with inhibitors of biosynthesis (cycloheximide), of matrix metalloproteinase (NIMP) activity (CGS 27023A or GM 6001), and of aggrecanase activity (SB 703704) on GAG release after injury were assessed. Results. GAG release from injured cartilage was highest during the first 4 hours after injury, but remained higher than that in controls during the first 24 hours postinjury, and was not affected by inhibitors of biosynthesis or degradative enzymes. GAG release during the period 24-72 hours postinjury was similar to that in uninjured controls, but the MMP inhibitor CGS 27023A reduced cumulative GAG loss from injured samples between 1 day and 7 days postinjury. Other inhibitors of enzymatic degradation or biosynthesis had no significant effect on GAG release. Conclusion. Injurious compression of articular cartilage induces an initially high rate of GAG release from the tissue, which could not be inhibited, consistent with mechanical damage. However, the finding that MMP inhibition reduced GAG loss in the days following injury suggests a potential therapeutic intervention.
引用
收藏
页码:840 / 848
页数:9
相关论文
共 53 条
[1]   Cytokine-induced cartilage proteoglycan degradation is mediated by aggrecanase [J].
Arner, EC ;
Hughes, CE ;
Decicco, CP ;
Caterson, B ;
Tortorella, MD .
OSTEOARTHRITIS AND CARTILAGE, 1998, 6 (03) :214-228
[2]   AGE-RELATED DIFFERENCES IN THE METABOLISM OF PROTEOGLYCANS IN BOVINE ARTICULAR-CARTILAGE EXPLANTS MAINTAINED IN THE PRESENCE OF INSULIN-LIKE GROWTH FACTOR-I [J].
BARONEVARELAS, J ;
SCHNITZER, TJ ;
QI, M ;
OTTEN, L ;
THONAR, EJMA .
CONNECTIVE TISSUE RESEARCH, 1991, 26 (1-2) :101-120
[3]   BIOCHEMICAL-CHANGES IN ARTICULAR-CARTILAGE AFTER JOINT IMMOBILIZATION BY CASTING OR EXTERNAL FIXATION [J].
BEHRENS, F ;
KRAFT, EL ;
OEGEMA, TR .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1989, 7 (03) :335-343
[4]   Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage [J].
Billinghurst, RC ;
Dahlberg, L ;
Ionescu, M ;
Reiner, A ;
Bourne, R ;
Rorabeck, C ;
Mitchell, P ;
Hambor, J ;
Diekmann, O ;
Tschesche, H ;
Chen, J ;
VanWart, H ;
Poole, AR .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (07) :1534-1545
[5]   Activation and inhibition of endogenous matrix metalloproteinases in articular cartilage: Effects on composition and biophysical properties [J].
Bonassar, LJ ;
Stinn, JL ;
Paguio, CG ;
Frank, EH ;
Moore, VL ;
Lark, MW ;
Sandy, JD ;
Hollander, AP ;
Poole, AR ;
Grodzinsky, AJ .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1996, 333 (02) :359-367
[6]  
BRANDT KD, 1991, ARTHRITIS RHEUM-US, V34, P1560
[7]   Articular cartilage .2. Degeneration and osteoarthrosis, repair, regeneration, and transplantation [J].
Buckwalter, JA ;
Mankin, HJ .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1997, 79A (04) :612-632
[8]   Mechanisms involved in cartilage proteoglycan catabolism [J].
Caterson, B ;
Flannery, CR ;
Hughes, GE ;
Little, CB .
MATRIX BIOLOGY, 2000, 19 (04) :333-344
[9]   Chondrocyte necrosis and apoptosis in impact damaged articular cartilage [J].
Chen, CT ;
Burton-Wurster, N ;
Borden, C ;
Hueffer, K ;
Bloom, SE ;
Lust, G .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2001, 19 (04) :703-711
[10]   Impact of mechanical trauma on matrix and cells [J].
D'Lima, DD ;
Hashimoto, S ;
Chen, PC ;
Colwell, CW ;
Lotz, MK .
CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2001, (391) :S90-S99