Maximum norm optimization of quasi-isometric mappings

被引:5
作者
Garanzha, VA [1 ]
机构
[1] Russian Acad Sci, Ctr Comp, Vavilova 40, Moscow 117967, Russia
关键词
surface grid generation; quasi-isometric mappings; optimization of mappings; surface flattening; graph drawing; morphing; grid sensitivity;
D O I
10.1002/nla.301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A reliable method for maximum norm optimization of spatial mappings is suggested. It is applied to the problem of optimal flattening of surfaces and to precisely controlled surface morphing. Robustness and grid independence of the method are demonstrated on real-life tests. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:493 / 510
页数:18
相关论文
共 23 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
[Anonymous], 1948, Acta Sci. Math. Szeged, V11, P229
[3]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[4]   ADAPTIVE ZONING FOR SINGULAR PROBLEMS IN 2 DIMENSIONS [J].
BRACKBILL, JU ;
SALTZMAN, JS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 46 (03) :342-368
[5]  
BRANETS LV, 2001, GRID GENERATION NEW, P45
[6]   Domain deformation mapping: Application to variational mesh generation [J].
De Almeida, VF .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (04) :1252-1275
[7]   Parametrization and smooth approximation of surface triangulations [J].
Floater, MS .
COMPUTER AIDED GEOMETRIC DESIGN, 1997, 14 (03) :231-250
[8]   How to morph tilings injectively [J].
Floater, MS ;
Gotsman, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 101 (1-2) :117-129
[9]  
Garanzha V. A., 2000, COMP MATH MATH PHYS, V40, P1617
[10]   Barrier variational generation of quasi-isometric grids [J].
Garanzha, VA .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2001, 8 (05) :329-353