Characterization of a eukaryotic-like tyrosine protein kinase expressed by the Shiga toxin-encoding bacteriophage 933W

被引:14
作者
Tyler, JS [1 ]
Friedman, DI [1 ]
机构
[1] Univ Michigan, Dept Microbiol & Immunol, Ann Arbor, MI 48109 USA
关键词
D O I
10.1128/JB.186.11.3472-3479.2004
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The Shiga toxin (Stx)-encoding bacteriophage 933W contains an open reading frame, stk, with amino acid sequence similarity to the catalytic domain of eukaryotic serine/threonine (Ser/Thr) protein kinases (PKs). Eukaryotic PKs are related by a common catalytic domain, consisting of invariant and nearly invariant residues necessary for ATP binding and phosphotransfer. We demonstrate that rather than a Ser/Thr kinase, stk encodes a eukaryotic-like tyrosine (Tyr) kinase. An affinity-purified recombinant Stk (rStk) autophosphorylates and catalyzes the phosphorylation of an artificial substrate on Tyr residues and not on Ser or Thr residues. A change of an invariant lysine within the putative catalytic domain abolishes this kinase activity, indicating that Stk uses a phosphotransfer mechanism similar to the mechanism used by eukaryotic PKs. We provide evidence suggesting that stk is cotranscribed with cl from the phage promoter responsible for maintaining CI expression during lysogeny. The stk gene was identified in prophages obtained from independently isolated Stx-producing Escherichia coli clinical isolates, suggesting that selective pressure has maintained the stk gene in these pathogenic bacteria.
引用
收藏
页码:3472 / 3479
页数:8
相关论文
共 72 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]  
Aster JC, 1997, J BIOL CHEM, V272, P11336
[3]  
Ausubel FM, 1995, CURRENT PROTOCOLS MO
[4]   The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis [J].
Av-Gay, Y ;
Everett, M .
TRENDS IN MICROBIOLOGY, 2000, 8 (05) :238-244
[5]   No longer an exclusive club: eukaryotic signalling domains in bacteria [J].
Bakal, CJ ;
Davies, JE .
TRENDS IN CELL BIOLOGY, 2000, 10 (01) :32-37
[6]   TYROSINE PHOSPHATE HYDROLYSIS OF HOST PROTEINS BY AN ESSENTIAL YERSINIA-VIRULENCE DETERMINANT [J].
BLISKA, JB ;
GUAN, KL ;
DIXON, JE ;
FALKOW, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (04) :1187-1191
[7]   Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved [J].
Boyd, EF ;
Brüssow, H .
TRENDS IN MICROBIOLOGY, 2002, 10 (11) :521-529
[8]  
Boyle WJ., 1991, METHOD ENZYMOL, V201, P110
[9]  
CAMPBELL A, 1983, LAMBDA, V2, P365
[10]  
Court D, 1983, LAMBDA, P251