Autonomous local path planning for a mobile robot using a genetic algorithm

被引:104
作者
Sedighi, KH [1 ]
Ashenayi, K [1 ]
Manikas, TW [1 ]
Wainwright, RL [1 ]
Tai, HM [1 ]
机构
[1] Univ Tulsa, Dept Elect Engn & Comp Sci, Tulsa, OK 74104 USA
来源
CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2 | 2004年
关键词
D O I
10.1109/CEC.2004.1331052
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents results of our work in development of a genetic algorithm based path-planning algorithm for local obstacle avoidance (local feasible path) of a mobile robot in a given search space. The method tries to find not only a valid path but also an optimal one. The objectives are to minimize the length of the path and the number of turns. The proposed path-planning method allows a free movement of the robot in any direction so that the path-planner can handle complicated search spaces.
引用
收藏
页码:1338 / 1345
页数:8
相关论文
共 20 条
[1]  
Arsene C. T. C., 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), P428, DOI 10.1109/CEC.1999.781956
[2]  
CAZANGI R, 2002, P 2002 IEEE C EV COM
[3]   A distributed architecture for autonomous navigation of robots [J].
Di Gesù, V ;
Lenzitti, B ;
Lo Bosco, G ;
Tegolo, D .
5TH INTERNATIONAL WORKSHOP ON COMPUTER ARCHITECTURES FOR MACHINE PERCEPTION, PROCEEDINGS, 2000, :190-194
[4]  
Farritor S., 1997, P 7 AM NUCL SOC C RO
[5]  
FILHO JLR, 1994, IEEE COMPUTER JUN, P28
[6]   What is evolutionary computation? [J].
Fogel, DB .
IEEE SPECTRUM, 2000, 37 (02) :26-32
[7]  
Gallardo D., 1998, 11 INT C IND ENG APP, P115
[8]  
Geisler T., 2002, P IEEE MIDW S CIRC S
[9]  
GEISLER T, 2002, THESIS U TULSA
[10]  
HERMANN A, 2002, THESIS U TULSA