Repairs to GLVQ: A new family of competitive learning schemes

被引:49
作者
Karayiannis, NB
Bezdek, JC
Pal, NR
Hathaway, RJ
Pai, PI
机构
[1] UNIV W FLORIDA,DEPT COMP SCI,PENSACOLA,FL 32514
[2] INDIAN STAT INST,MACHINE INTELLIGENCE UNIT,CALCUTTA 700035,W BENGAL,INDIA
[3] GEORGIA SO COLL,DEPT MATH & COMP SCI,STATESBORO,GA 30460
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1996年 / 7卷 / 05期
关键词
D O I
10.1109/72.536304
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
First, we identify an algorithmic defect of the generalized learning vector quantization (GLVQ) scheme that causes it to behave erratically for a certain scaling of the input data, We show that GLVQ can behave incorrectly because its learning rates are reciprocally dependent on the sum of squares of distances from an input vector to the node weight vectors, Finally, we propose a new family of models-the GLVQ-F family-that remedies the problem. We derive competitive learning algorithms for each member of the GLVQ-F model and prove that they are invariant to all scalings of the data. We show that GLVQ-F offers a wide range of learning models since it reduces to LVQ as its weighting exponent (a parameter of the algorithm) approaches one from above. As this parameter increases, GLVQ-F then transitions to a Model in which either all nodes may be excited according to their; (inverse) distances from an input or in which the winner is excited while losers are penalized. And as this parameter increases without limit, GLVQ-F updates all nodes equally, We illustrate the failure of GLVQ and success of GLVQ-F with the IRIS data.
引用
收藏
页码:1062 / 1071
页数:10
相关论文
共 18 条
  • [1] Anderson E., 1935, Bulletin of the American IRIS Society, V59, P2
  • [2] Bezdek J.C., 2013, Pattern Recognition With Fuzzy Objective Function Algorithms
  • [3] CHUNG FL, 1992, NEURAL NETWORKS, V7, P539
  • [4] Duda R. O., 1973, PATTERN CLASSIFICATI, V3
  • [5] AN ANALYSIS OF THE GLVQ ALGORITHM
    GONZALEZ, AI
    GRANA, M
    DANJOU, A
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1995, 6 (04): : 1012 - 1016
  • [6] Hartigan J. A., 1975, CLUSTERING ALGORITHM
  • [7] HUNTSBERGER T, 1989, INT J GEN SYST, V16, P357
  • [8] JAIN AMP, 1988, ALGORITHMS CLUSTER D
  • [9] KARAYIANNIS NB, 1994, P IEEE INT C SYST MA, P126
  • [10] KARAYIANNIS NB, 1994, INTELLIGENT ENG SYST, V4, P219