Ssu72 is an RNA polymerase IICTD phosphatase

被引:191
作者
Krishnamurthy, S
He, XY
Reyes-Reyes, M
Moore, C
Hampsey, M [1 ]
机构
[1] Robert Wood Johnson Med Sch, Dept Biochem, Div Nucle Acids Enzymol, Piscataway, NJ 08854 USA
[2] Tufts Univ, Sch Med, Dept Mol Biol & Microbiol, Boston, MA 02111 USA
关键词
D O I
10.1016/S1097-2765(04)00235-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phosphorylation of serine-2 (S2) and serine-5 (S5) of the C-terminal domain (CTD) of RNA polymerase II (RNAP II) is a dynamic process that regulates the transcription cycle and coordinates recruitment of RNA processing factors. The Fcp1 CTD phosphatase catalyzes dephosphorylation of S2-P. Here, we report that Ssu72, a component of the yeast cleavage/polyadenylation factor (CPF) complex, is a CTD phosphatase with specificity for S5-P. Ssu72 catalyzes CTD S5-P dephosphorylation in association with the Pta1 component of the CPF complex, although its essential role in 3' end processing is independent of catalytic activity. Depletion of Ssu72 impairs transcription in vitro, and this defect can be rescued by recombinant, catalytically active Ssu72. We propose that Ssu72 has a dual role in transcription, one as a CTD S5-P phosphatase that regenerates the initiation-competent, hypophosphorylated form of RNAP II and the other as a factor necessary for cleavage of pre-mRNA and efficient transcription termination.
引用
收藏
页码:387 / 394
页数:8
相关论文
共 44 条
[1]   Phosphorylation of serine 2 within the RNA polymerase IIC-terminal domain couples transcription and 3′ end processing [J].
Ahn, SH ;
Kim, M ;
Buratowski, S .
MOLECULAR CELL, 2004, 13 (01) :67-76
[2]   An essential component of a C-terminal domain phosphatase that interacts with transcription factor IIF in Saccharomyces cerevisiae [J].
Archambault, J ;
Chambers, RS ;
Kobor, MS ;
Ho, Y ;
Cartier, M ;
Bolotin, D ;
Andrews, B ;
Kane, CM ;
Greenblatt, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) :14300-14305
[3]   Strange bedfellows: polyadenylation factors at the promoter [J].
Calvo, O ;
Manley, JL .
GENES & DEVELOPMENT, 2003, 17 (11) :1321-1327
[4]   Functional interaction between TFIIB and the Rpb2 subunit of RNA polymerase II: Implications for the mechanism of transcription initiation [J].
Chen, BS ;
Hampsey, M .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (09) :3983-3991
[5]   SEPARATION OF FACTORS REQUIRED FOR CLEAVAGE AND POLYADENYLATION OF YEAST PRE-MESSENGER-RNA [J].
CHEN, J ;
MOORE, C .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (08) :3470-3481
[6]   Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain [J].
Cho, EJ ;
Kobor, MS ;
Kim, M ;
Greenblatt, J ;
Buratowski, S .
GENES & DEVELOPMENT, 2001, 15 (24) :3319-3329
[7]   BeF3- acts as a phosphate analog in proteins phosphorylated on aspartate:: Structure of a BeF3- complex with phosphoserine phosphatase [J].
Cho, H ;
Wang, WR ;
Kim, R ;
Yokota, H ;
Damo, S ;
Kim, SH ;
Wemmer, D ;
Kustu, S ;
Yan, DL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (15) :8525-8530
[8]   TAILS OF RNA POLYMERASE-II [J].
CORDEN, JL .
TRENDS IN BIOCHEMICAL SCIENCES, 1990, 15 (10) :383-387
[9]   Reversible phosphorylation of the C-terminal domain of RNA polymerase II [J].
Dahmus, ME .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (32) :19009-19012
[10]   Transcription factor TFIID recruits factor CPSF for formation of 3' end of mRNA [J].
Dantonel, JC ;
Murthy, KGK ;
Manley, JL ;
Tora, L .
NATURE, 1997, 389 (6649) :399-402