Recognizing Obesity and Comorbidities in Sparse Data

被引:150
作者
Uzuner, Oezlem [1 ,2 ]
机构
[1] SUNY Albany, Coll Comp Informat, Albany, NY 12222 USA
[2] Middle E Tech Univ, Guzelyurt 10, Mersin, Turkey
关键词
D O I
10.1197/jamia.M3115
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to survey, facilitate, and evaluate studies of medical language processing on clinical narratives, i2b2 (Informatics for Integrating Biology to the Bedside) organized its second challenge and workshop. This challenge focused on automatically extracting information on obesity and fifteen of its most common comorbidities from patient discharge summaries. For each patient, obesity and any of the comorbidities could be Present, Absent, or Questionable (i.e., possible) in the patient, or Unmentioned in the discharge summary of the patient. i2b2 provided data for, and invited the development of, automated systems that can classify obesity and its comorbidities into these four classes based on individual discharge summaries. This article refers to obesity and comorbidities as diseases. It refers to the categories Present, Absent, Questionable, and Unmentioned as classes. The task of classifying obesity and its comorbidities is called the Obesity Challenge. The data released by i2b2 was annotated for textual judgments reflecting the explicitly reported information oil diseases, and intuitive judgments reflecting medical professionals' reading of the information presented in discharge summaries. There were very few examples of some disease classes in the data. The Obesity Challenge paid particular attention to the performance of systems on these less well-represented classes. A total of 30 teams participated in the Obesity Challenge. Each team was allowed to submit two sets of up to three system runs for evaluation, resulting in a total of 136 submissions. The submissions represented a combination of rule-based and machine learning approaches. Evaluation of system runs shows that the best predictions of textual judgments come from systems that filter the potentially noisy portions of the narratives, project dictionaries of disease names onto the remaining text, apply negation extraction, and process the text through rules. Information on disease-related concepts, such as symptoms and medications, and general medical knowledge help systems infer intuitive judgments on the diseases.
引用
收藏
页码:561 / 570
页数:10
相关论文
共 50 条
[1]   A System for Classifying Disease Comorbidity Status from Medical Discharge Summaries Using Automated Hotspot and Negated Concept Detection [J].
Ambert, Kyle H. ;
Cohen, Aaron M. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2009, 16 (04) :590-595
[2]  
[Anonymous], BMC BIOINFORM
[3]  
BARRETT N, 2008, P I2B2 WORKSH CHALL
[4]  
CALIFF ME, 2008, P I2B2 WORKSH CHALL
[5]  
Chapman W., 2007, CONTEXT ALGORITHM ID, P81
[6]   A simple algorithm for identifying negated findings and diseases in discharge summaries [J].
Chapman, WW ;
Bridewell, W ;
Hanbury, P ;
Cooper, GF ;
Buchanan, BG .
JOURNAL OF BIOMEDICAL INFORMATICS, 2001, 34 (05) :301-310
[7]   Description of a Rule-based System for the i2b2 Challenge in Natural Language Processing for Clinical Data [J].
Childs, Lois C. ;
Enelow, Robert ;
Simonsen, Lone ;
Heintzelman, Norris H. ;
Kowalski, Kimberly M. ;
Taylor, Robert J. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2009, 16 (04) :571-575
[8]  
CHINCHOR N, 1992, FOURTH MESSAGE UNDERSTANDING CONFERENCE (MUC-4), P30
[9]   The spread of obesity in a large social network over 32 years [J].
Christakis, Nicholas A. ;
Fowler, James H. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 357 (04) :370-379
[10]   A COEFFICIENT OF AGREEMENT FOR NOMINAL SCALES [J].
COHEN, J .
EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 1960, 20 (01) :37-46