Non-local crystal plasticity model with intrinsic SSD and GND effects

被引:296
作者
Evers, LP [1 ]
Brekelmans, WAM [1 ]
Geers, MGD [1 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, Sect Mat Sci, NL-5600 MB Eindhoven, Netherlands
关键词
A; dislocations; strengthening and mechanisms; B. constitutive behavior; crystal plasticity; metallic materials;
D O I
10.1016/j.jmps.2004.03.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A strain gradient-dependent crystal plasticity approach is presented to model the constitutive behaviour of polycrystal FCC metals under large plastic deformation. In order to be capable of predicting scale dependence, the heterogeneous deformation-induced evolution and distribution of geometrically necessary dislocations (GNDs) are incorporated into the phenomenological continuum theory of crystal plasticity. Consequently, the resulting boundary value problem accommodates, in addition to the ordinary stress equilibrium condition, a condition which sets the additional nodal degrees of freedom, the edge and screw GND densities, proportional (in a weak sense) to the gradients of crystalline slip. Next to this direct coupling between microstructural dislocation evolutions and macroscopic gradients of plastic slip, another characteristic of the presented crystal plasticity model is the incorporation of the GND-effect, which leads to an essentially different constitutive behaviour than the statistically stored dislocation (SSD) densities. The GNDs, by their geometrical nature of locally similar signs, are expected to influence the plastic flow through a non-local back-stress measure, counteracting the resolved shear stress on the slip systems in the undeformed situation and providing a kinematic hardening contribution. Furthermore, the interactions between both SSD and GND densities are subject to the formation of slip system obstacle densities and accompanying hardening, accountable for slip resistance. As an example problem and without loss of generality, the model is applied to predict the formation of boundary layers and the accompanying size effect of a constrained strip under simple shear deformation, for symmetric double-slip conditions. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2379 / 2401
页数:23
相关论文
共 50 条
[1]   Grain-size effect in viscoplastic polycrystals at moderate strains [J].
Acharya, A ;
Beaudoin, AJ .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2000, 48 (10) :2213-2230
[2]   A model of crystal plasticity based on the theory of continuously distributed dislocations [J].
Acharya, A .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2001, 49 (04) :761-784
[3]   THE PHYSICS OF PLASTIC-DEFORMATION [J].
AIFANTIS, EC .
INTERNATIONAL JOURNAL OF PLASTICITY, 1987, 3 (03) :211-247
[4]   STRAIN LOCALIZATION IN DUCTILE SINGLE-CRYSTALS [J].
ASARO, RJ ;
RICE, JR .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1977, 25 (05) :309-338
[5]   DEFORMATION OF PLASTICALLY NON-HOMOGENEOUS MATERIALS [J].
ASHBY, MF .
PHILOSOPHICAL MAGAZINE, 1970, 21 (170) :399-&
[6]   Plastic flow in a composite: a comparison of nonlocal continuum and discrete dislocation predictions [J].
Bassani, JL ;
Needleman, A ;
Van der Giessen, E .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2001, 38 (05) :833-853
[7]   Incompatibility and a simple gradient theory of plasticity [J].
Bassani, JL .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2001, 49 (09) :1983-1996
[8]  
BECKER R, 1995, ACTA METALL MATER, V43, P2107
[9]   A comparison of nonlocal continuum and discrete dislocation plasticity predictions [J].
Bittencourt, E ;
Needleman, A ;
Gurtin, ME ;
Van der Giessen, E .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2003, 51 (02) :281-310
[10]   POLYCRYSTALLINE PLASTICITY AND THE EVOLUTION OF CRYSTALLOGRAPHIC TEXTURE IN FCC METALS [J].
BRONKHORST, CA ;
KALIDINDI, SR ;
ANAND, L .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 341 (1662) :443-477