SYD-2 Liprin-α organizes presynaptic active zone formation through ELKS

被引:164
作者
Dai, Ya
Taru, Hidenori
Deken, Scott L.
Grill, Brock
Ackley, Brian
Nonet, Michael L.
Jin, Yishi
机构
[1] Univ Calif Santa Cruz, Dept Mol Cell & Dev Biol, Sinsheimer Labs, Santa Cruz, CA 95064 USA
[2] Univ Calif Santa Cruz, Howard Hughes Med Inst, Santa Cruz, CA 95064 USA
[3] Washington Univ, Sch Med, Dept Anat & Neurobiol, St Louis, MO 63110 USA
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
D O I
10.1038/nn1808
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A central event in synapse development is formation of the presynaptic active zone in response to positional cues. Three active zone proteins, RIM, ELKS (also known as ERC or CAST) and Liprin-alpha, bind each other and are implicated in linking active zone formation to synaptic vesicle release. Loss of function in Caenorhabditis elegans syd-2 Liprin-alpha alters the size of presynaptic specializations and disrupts synaptic vesicle accumulation. Here we report that a missense mutation in the coiled-coil domain of SYD-2 causes a gain of function. In HSN synapses, the syd-2(gf) mutation promotes synapse formation in the absence of syd-1, which is essential for HSN synapse formation. syd-2(gf) also partially suppresses the synaptogenesis defects in syg-1 and syg-2 mutants. The activity of syd-2(gf) requires elks-1, an ELKS homolog; but not unc-10, a RIM homolog. The mutant SYD-2 shows increased association with ELKS. These results establish a functional dependency for assembly of the presynaptic active zone in which SYD-2 plays a key role.
引用
收藏
页码:1479 / 1487
页数:9
相关论文
共 42 条
[1]   The two isoforms of the Caenorhabditis elegans leukocyte-common antigen related receptor tyrosine phosphatase PTP-3 function independently in axon guidance and synapse formation [J].
Ackley, BD ;
Harrington, RJ ;
Hudson, ML ;
Williams, L ;
Kenyon, CJ ;
Chisholm, AD ;
Jin, Y .
JOURNAL OF NEUROSCIENCE, 2005, 25 (33) :7517-7528
[2]   Munc13-1 is essential for fusion competence of glutamatergic synoptic vesicles [J].
Augustin, I ;
Rosenmund, C ;
Südhof, TC ;
Brose, N .
NATURE, 1999, 400 (6743) :457-461
[3]  
BRENNER S, 1974, GENETICS, V77, P71
[4]   Redundant localization mechanisms of RIM and ELKS in Caenorhabditis elegans [J].
Deken, SL ;
Vincent, R ;
Hadwiger, G ;
Liu, Q ;
Wang, ZW ;
Nonet, ML .
JOURNAL OF NEUROSCIENCE, 2005, 25 (25) :5975-5983
[5]   A GENETIC PATHWAY FOR THE DEVELOPMENT OF THE CAENORHABDITIS-ELEGANS HSN MOTOR NEURONS [J].
DESAI, C ;
GARRIGA, G ;
MCINTIRE, SL ;
HORVITZ, HR .
NATURE, 1988, 336 (6200) :638-646
[6]   THE UNC-86 GENE-PRODUCT COUPLES CELL LINEAGE AND CELL IDENTITY IN C-ELEGANS [J].
FINNEY, M ;
RUVKUN, G .
CELL, 1990, 63 (05) :895-905
[7]   SYD-1, a presynaptic protein with PDZ, C2 and rhoGAP-like domains, specifies axon identity in C-elegans [J].
Hallam, SJ ;
Goncharov, A ;
McEwen, J ;
Baran, R ;
Jin, YS .
NATURE NEUROSCIENCE, 2002, 5 (11) :1137-1146
[8]  
JIN Y, 2005, WORMBOOK
[9]   The LIN-2/LIN-7/LIN-10 complex mediates basolateral membrane localization of the C-elegans EGF receptor LET-23 in vulval epithelial cells [J].
Kaech, SM ;
Whitfield, CW ;
Kim, SK .
CELL, 1998, 94 (06) :761-771
[10]   Drosophila liprin-α and the receptor phosphatase Dlar control synapse morphogenesis [J].
Kaufmann, N ;
DeProto, J ;
Ranjan, R ;
Wan, H ;
Van Vactor, D .
NEURON, 2002, 34 (01) :27-38