Nature of phosphate substrate as a major determinant of mineral type formed in matrix vesicle-mediated in vitro mineralization: An FTIR imaging study

被引:64
作者
Garimella, Rama
Bi, Xiaohong
Anderson, H. Clarke
Camacho, Nancy P.
机构
[1] Univ Kansas, Med Ctr, Dept Pathol & Lab Med, Kansas City, KS 66160 USA
[2] Hosp Special Surg, Div Res, New York, NY 10021 USA
关键词
matrix vesicles; mineralization; cartilage; bone; hydroxyapatite; infrared spectroscopy;
D O I
10.1016/j.bone.2005.11.027
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Membrane-bound extracellular matrix vesicles play an important role in the de novo initiation and propagation of calcium-phosphate mineral formation in calcifying cartilage, bone, dentin, and in pathologic calcification. Characterization of the phase, composition, crystal size, and perfection provides valuable insight into the mechanism of the mineral deposition. In the present study, Fourier transform infrared imaging spectroscopy (FT-IRIS) was used to characterize the mineral phase generated during MV-mediated in vitro mineralization. FT-IRIS studies revealed that the mineral phase associated with MVs calcified in the presence of AMP and beta-GP was always found to be crystalline hydroxyapatite while with ATP only a small amount of immature mineral, most likely an amorphous or poorly crystalline hydroxyapatite, was observed. Low concentrations of pyrophosphate (PPi) (< or = 0.01 mM) showed apatitic mineral while high concentrations showed immature calcium pyrophosphate dihydrate (CPPD). The implications of these findings are that (a) hydrolysis of AMP or beta-GP, monophosphoester substrates of MV-5' AMPase (substrate: AMP) and TNAP (substrates: AMP, (beta-GP), yields orthophosphate (Pi) which leads to the formation of mature crystalline, apatite mineral, while the hydrolysis of ATP, substrate for MV-TNAP or ATPase or NPP1, inhibits the formation of mature hydroxyapatite, and (b) pyrophosphate (PPi) has a bimodal effect on mineralization, i.e., at low PPi concentrations, alkaline phosphatase activity of matrix vesicles is able to hydrolyze PPi to orthophosphate and thus facilitates the formation of basic calcium phosphate mineral which subsequently transforms into apatitic mineral. We hypothesize that, at high PPi concentrations, PPi by itself or Pi released by partial PPi hydrolysis could act as inhibitors of alkaline phosphatase activity, thereby preventing complete hydrolysis of PPi to Pi, and thus resulting in the accumulation of calcium pyrophosphate dihydrate. Therefore, in order for physiological mineralization to proceed, a balance is required between levels of Pi and PPi. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:811 / 817
页数:7
相关论文
共 58 条
[1]   ISOLATION AND CHARACTERIZATION OF CALCIFYING MATRIX VESICLES FROM EPIPHYSEAL CARTILAGE [J].
ALI, SY ;
SAJDERA, SW ;
ANDERSON, HC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1970, 67 (03) :1513-+
[2]  
ALI SY, 1981, 3RD P INT C MATR VES, P241
[3]   Sustained osteomalacia of long bones despite major improvement in other hypophosphatasia-related mineral deficits in tissue nonspecific alkaline phosphatase/nucleoticle pyrophosphatase phosphodiesterase 1 double-deficient mice [J].
Anderson, HC ;
Harmey, D ;
Camacho, NP ;
Garimella, R ;
Sipe, JB ;
Tague, S ;
Bi, XH ;
Johnson, K ;
Terkeltaub, R ;
Millán, JL .
AMERICAN JOURNAL OF PATHOLOGY, 2005, 166 (06) :1711-1720
[4]   The role of matrix vesicles in growth plate development and biomineralization [J].
Anderson, HC ;
Garimella, R ;
Tague, SE .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2005, 10 :822-837
[5]  
ANDERSON HC, 1990, AM J PATHOL, V136, P391
[6]   VESICLES ASSOCIATED WITH CALCIFICATION IN MATRIX OF EPIPHYSEAL CARTILAGE [J].
ANDERSON, HC .
JOURNAL OF CELL BIOLOGY, 1969, 41 (01) :59-+
[7]   Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice [J].
Anderson, HC ;
Sipe, JB ;
Hessle, L ;
Dhamyamraju, R ;
Atti, E ;
Camacho, NP ;
Millán, JL .
AMERICAN JOURNAL OF PATHOLOGY, 2004, 164 (03) :841-847
[8]   PYROPHOSPHATE STIMULATION OF CALCIUM UPTAKE INTO CULTURED EMBRYONIC BONES - FINE-STRUCTURE OF MATRIX VESICLES AND THEIR ROLE IN CALCIFICATION [J].
ANDERSON, HC ;
REYNOLDS, JJ .
DEVELOPMENTAL BIOLOGY, 1973, 34 (02) :211-227
[9]   AN ELECTRON MICROSCOPIC STUDY OF INITIAL INTRAMEMBRANOUS OSTEOGENESIS [J].
BERNARD, GW ;
PEASE, DC .
AMERICAN JOURNAL OF ANATOMY, 1969, 125 (03) :271-&
[10]   EFFECT OF CARBONATE AND BIOLOGICAL MACROMOLECULES ON FORMATION AND PROPERTIES OF HYDROXYAPATITE [J].
BLUMENTHAL, NC ;
BETTS, F ;
POSNER, AS .
CALCIFIED TISSUE RESEARCH, 1975, 18 (02) :81-90