In vivo differentiation of stem cells in the aorta-gonad-mesonephros region of mouse embryo and adult bone marrow

被引:17
作者
Tamura, H
Okamoto, S
Iwatsuki, K
Futamata, Y
Tanaka, K
Nakayama, Y
Miyajima, A
Hara, T
机构
[1] Tokyo Metropolitan Org Med Res, Tokyo Metropolitan Inst Med Sci, Dept Tumor Biochem, Bunkyo Ku, Tokyo 1138613, Japan
[2] Univ Tokyo, Inst Mol & Cellular Biosci, Tokyo, Japan
[3] Nippon Becton Dickinson Co Ltd, Tokyo, Japan
关键词
D O I
10.1016/S0301-472X(02)00822-6
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective. Hematopoietic stem cells (HSCs) are thought to be generated from hemangioblasts, the common precursor cells for blood and endothelial cells, in the aorta-gonad-mesonephros (AGM) region of the mouse embryo. The genetic program of HSCs was recently demonstrated to be plastic, but the potential for AGM-region hemangioblasts to be transplanted and to differentiate in vivo has not been well described. Here we examined the fate of donor cells in mice transplanted with CD45(-) AGM cells, which presumably include hemangioblasts. Materials and Methods. CD45(-) cells in the AGM region of embryos at 11.5 days post coitum or CD45(+)CD34(-) side population (SP) of cells in adult bone marrow (BM) derived from enhanced green fluorescent protein transgenic mice were transplanted into the liver of busulfan-treated neonatal mice. Two to 6 months after injection of the cells, the contribution of donor-derived cells in the hematopoietic compartment and in various organs was analyzed by flow cytometry and confocal microscopy. Results. CD45(-) cells from the AGM region not only generated peripheral blood cells but also differentiated into endothelial and other nonhematopoietic cells in liver, kidney, lung, small intestine, and uterus in transplanted mice. A similar engrafting pattern was observed in the small intestine of mice transplanted with BM SP/CD45(+) cells, secondary BM-transplanted mice, and lethally irradiated adult mice that received intravenous injections of BM cells. Conclusion. A CD45(-) fraction of the AGM region and CD45(+) BM stem cells share the same in vivo potential to differentiate into hematopoietic, endothelial, smooth muscle, and stroma-like cells when transplanted in mice. (C) 2002 International Society for Experimental Hematology. Published by Elsevier Science Inc.
引用
收藏
页码:957 / 966
页数:10
相关论文
共 50 条
[1]   Isolation of putative progenitor endothelial cells for angiogenesis [J].
Asahara, T ;
Murohara, T ;
Sullivan, A ;
Silver, M ;
vanderZee, R ;
Li, T ;
Witzenbichler, B ;
Schatteman, G ;
Isner, JM .
SCIENCE, 1997, 275 (5302) :964-967
[2]   Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization [J].
Asahara, T ;
Masuda, H ;
Takahashi, T ;
Kalka, C ;
Pastore, C ;
Silver, M ;
Kearne, M ;
Magner, M ;
Isner, JM .
CIRCULATION RESEARCH, 1999, 85 (03) :221-228
[3]   From marrow to brain: Expression of neuronal phenotypes in adult mice [J].
Brazelton, TR ;
Rossi, FMV ;
Keshet, GI ;
Blau, HM .
SCIENCE, 2000, 290 (5497) :1775-1779
[4]  
Choi K, 1998, DEVELOPMENT, V125, P725
[5]   Biology of bone marrow stroma [J].
Clark, BR ;
Keating, A .
BONE MARROW TRANSPLANTATION: FOUNDATIONS FOR THE 21ST CENTURY, 1995, 770 :70-78
[6]   ANGIOBLAST DIFFERENTIATION AND MORPHOGENESIS OF THE VASCULAR ENDOTHELIUM IN THE MOUSE EMBRYO [J].
COFFIN, JD ;
HARRISON, J ;
SCHWARTZ, S ;
HEIMARK, R .
DEVELOPMENTAL BIOLOGY, 1991, 148 (01) :51-62
[7]   Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution [J].
Cumano, A ;
Ferraz, JC ;
Klaine, M ;
Di Santo, JP ;
Godin, I .
IMMUNITY, 2001, 15 (03) :477-485
[8]   Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo [J].
de Bruijn, MFTR ;
Speck, NA ;
Peeters, MCE ;
Dzierzak, E .
EMBO JOURNAL, 2000, 19 (11) :2465-2474
[9]   Ligand-dependent development of the endothelial and hemopoietic lineages from embryonic mesodermal cells expressing vascular endothelial growth factor receptor 2 [J].
Eichmann, A ;
Corbel, C ;
Nataf, V ;
Vaigot, P ;
Breant, C ;
LeDouarin, NM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) :5141-5146
[10]   Muscle regeneration by bone marrow derived myogenic progenitors [J].
Ferrari, G ;
Cusella-De Angelis, G ;
Coletta, M ;
Paolucci, E ;
Stornaiuolo, A ;
Cossu, G ;
Mavilio, F .
SCIENCE, 1998, 279 (5356) :1528-1530