Detecting an inclusion in an elastic body boundary measurements

被引:46
作者
Alessandrini, G [1 ]
Morassi, A
Rosset, E
机构
[1] Univ Trieste, Dipartimento Sci Matemat, Trieste, Italy
[2] Univ Udine, Dipartimento Ingn Civile, I-33100 Udine, Italy
关键词
inverse boundary problem; elasticity; size estimates; strong unique continuation;
D O I
10.1137/S0036141001388944
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of determining, within an elastic isotropic body Omega, the possible presence of an inclusion D made of different elastic material from boundary measurements of traction and displacement. We prove that the volume of D can be estimated, from above and below, by an easily expressed quantity related to work depending only on the boundary traction and displacement.
引用
收藏
页码:1247 / 1268
页数:22
相关论文
共 31 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   ESTIMATES NEAR BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .2. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (01) :35-&
[3]   Strong unique continuation for the Lame system of elasticity [J].
Alessandrini, G ;
Morassi, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (9-10) :1787-1810
[4]   Optimal size estimates for the inverse conductivity problem with one measurement [J].
Alessandrini, G ;
Rosset, E ;
Seo, JK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (01) :53-64
[5]   The inverse conductivity problem with one measurement: Bounds on the size of the unknown object [J].
Alessandrini, G ;
Rosset, E .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (04) :1060-1071
[6]  
Alessandrini G., 1999, MATEMATICHE, V54, P5
[7]  
Alessandrini G., 1996, Rend. Istit. Mat. Univ. Trieste, V28, P351
[8]  
Ang DD, 1998, COMMUN PART DIFF EQ, V23, P371
[9]  
[Anonymous], 1972, MECH SOLID 2
[10]  
Aronszajn N., 1962, ARK MAT, V4, P417, DOI DOI 10.1007/BF02591624