Improving fuzzy c-means clustering based on feature-weight learning

被引:282
作者
Wang, XZ [1 ]
Wang, YD
Wang, LJ
机构
[1] Hebei Univ, Dept Math & Comp Sci, Hebei 071002, Peoples R China
[2] Harbin Inst Technol, Dept Comp Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China
关键词
fuzzy c-means; weighted fuzzy c-means; fuzziness; similarity measure; gradient descent technique;
D O I
10.1016/j.patrec.2004.03.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature-weight assignment can be regarded as a generalization of feature selection. That is, if all values of feature-weights are either 1 or 0, feature-weight assignment degenerates to the special case of feature selection. Generally speaking, a number in [0, 1] can be assigned to a feature for indicating the importance of the feature. This paper shows that an appropriate assignment of feature-weight can improve the performance of fuzzy c-means clustering. The weight assignment is given by learning according to the gradient descent technique. Experiments on some UCI databases demonstrate the improvement of performance of fuzzy c-means clustering. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1123 / 1132
页数:10
相关论文
共 24 条
  • [1] [Anonymous], 1988, ALGORITHMS CLUSTERIN
  • [2] [Anonymous], Pattern Recognition With Fuzzy Objective Function Algorithms
  • [3] Unsupervised feature selection using a neuro-fuzzy approach
    Basak, J
    De, RK
    Pal, SK
    [J]. PATTERN RECOGNITION LETTERS, 1998, 19 (11) : 997 - 1006
  • [4] BASU S, 2000, P IEEE INT S CIRC SY, V3, P267
  • [5] Bezdek J. C, 1975, P 8 INT C NUM TAX SA, P143
  • [6] BEZDEK JC, 1980, COMPUT INFORM SCI, V9, P232
  • [7] Bezdek JC, 1974, J CYBERNETICS, V3, P58, DOI [10.1080/01969727308546047, DOI 10.1080/01969727308546047]
  • [8] EFFICIENT IMPLEMENTATION OF THE FUZZY C-MEANS CLUSTERING ALGORITHMS
    CANNON, RL
    DAVE, JV
    BEZDEK, JC
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1986, 8 (02) : 248 - 255
  • [9] Dash M., 2000, P PAC AS C KNOWL DIS, P110
  • [10] DEFINITION OF NONPROBABILISTIC ENTROPY IN SETTING OF FUZZY SETS THEORY
    DELUCA, A
    TERMINI, S
    [J]. INFORMATION AND CONTROL, 1972, 20 (04): : 301 - &