Classification of low quality cells from single-cell RNA-seq data

被引:421
作者
Ilicic, Tomislav [1 ,2 ]
Kim, Jong Kyoung [1 ]
Kolodziejczyk, Aleksandra A. [1 ,2 ]
Bagger, Frederik Otzen [1 ,5 ,6 ]
McCarthy, Davis James [1 ,7 ]
Marioni, John C. [1 ,2 ,4 ]
Teichmann, Sarah A. [1 ,2 ,3 ]
机构
[1] EBI, EMBL, Wellcome Trust Genome Campus, Cambridge CB10 1SD, England
[2] Wellcome Trust Sanger Inst, Wellcome Genome Campus, Cambridge CB10 1SA, England
[3] Univ Cambridge, Dept Phys, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[4] Univ Cambridge, Canc Res UK Cambridge Inst, Robinson Way, Cambridge CB2 0RE, England
[5] Univ Cambridge, Dept Haematol, Cambridge Biomed Campus, Cambridge CB2 0PT, England
[6] Natl Hlth Serv NHS Blood & Transplant, Cambridge Biomed Campus, Cambridge CB2 0PT, England
[7] St Vincents Inst Med Res, Fitzroy, Vic 3065, Australia
来源
GENOME BIOLOGY | 2016年 / 17卷
基金
英国生物技术与生命科学研究理事会;
关键词
BURROWS-WHEELER TRANSFORM; GENE-EXPRESSION; READ ALIGNMENT; GENOME-WIDE; TRANSCRIPTOMICS; HETEROGENEITY; REGULATORS; ULTRAFAST; DYNAMICS; NOISE;
D O I
10.1186/s13059-016-0888-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Single-cell RNA sequencing (scRNA-seq) has broad applications across biomedical research. One of the key challenges is to ensure that only single, live cells are included in downstream analysis, as the inclusion of compromised cells inevitably affects data interpretation. Here, we present a generic approach for processing scRNA-seq data and detecting low quality cells, using a curated set of over 20 biological and technical features. Our approach improves classification accuracy by over 30 % compared to traditional methods when tested on over 5,000 cells, including CD4+ T cells, bone marrow dendritic cells, and mouse embryonic stem cells.
引用
收藏
页数:15
相关论文
共 52 条
[1]   Count-based differential expression analysis of RNA sequencing data using R and Bioconductor [J].
Anders, Simon ;
McCarthy, Davis J. ;
Chen, Yunshun ;
Okoniewski, Michal ;
Smyth, Gordon K. ;
Huber, Wolfgang ;
Robinson, Mark D. .
NATURE PROTOCOLS, 2013, 8 (09) :1765-1786
[2]  
[Anonymous], BIOINFORMATICS
[3]  
[Anonymous], TOPGO TOPGO ENRICHME
[4]   Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing [J].
Blase, Fernando H. ;
Cao, Xiaoyi ;
Zhong, Sheng .
GENOME RESEARCH, 2014, 24 (11) :1787-1796
[5]  
Brennecke P, 2013, NAT METHODS, V10, P1093, DOI [10.1038/nmeth.2645, 10.1038/NMETH.2645]
[6]   Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells [J].
Buettner, Florian ;
Natarajan, Kedar N. ;
Casale, F. Paolo ;
Proserpio, Valentina ;
Scialdone, Antonio ;
Theis, Fabian J. ;
Teichmann, Sarah A. ;
Marioni, John C. ;
Stegie, Oliver .
NATURE BIOTECHNOLOGY, 2015, 33 (02) :155-160
[7]   RNA-SeQC: RNA-seq metrics for quality control and process optimization [J].
DeLuca, David S. ;
Levin, Joshua Z. ;
Sivachenko, Andrey ;
Fennell, Timothy ;
Nazaire, Marc-Danie ;
Williams, Chris ;
Reich, Michael ;
Winckler, Wendy ;
Getz, Gad .
BIOINFORMATICS, 2012, 28 (11) :1530-1532
[8]   Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells [J].
Deng, Qiaolin ;
Ramskold, Daniel ;
Reinius, Bjorn ;
Sandberg, Rickard .
SCIENCE, 2014, 343 (6167) :193-196
[9]   Functions and dysfunctions of mitochondrial dynamics [J].
Detmer, Scott A. ;
Chan, David C. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2007, 8 (11) :870-879
[10]   STAR: ultrafast universal RNA-seq aligner [J].
Dobin, Alexander ;
Davis, Carrie A. ;
Schlesinger, Felix ;
Drenkow, Jorg ;
Zaleski, Chris ;
Jha, Sonali ;
Batut, Philippe ;
Chaisson, Mark ;
Gingeras, Thomas R. .
BIOINFORMATICS, 2013, 29 (01) :15-21