Structural basis of α-amylase activation by chloride

被引:74
作者
Aghajari, N
Feller, G
Gerday, C
Haser, R
机构
[1] CNRS, UCBLI, UMR 5086, Inst Biol & Chim Prot,Lab Biocristallog, F-69367 Lyon 07, France
[2] Univ Liege, Inst Chim B6, Biochim Lab, B-4000 Liege, Belgium
关键词
allosteric activation; family 13 glycosyl hydrolases; alpha-amylase; psychrophilic; crystal structures; chloride ion; monovalent anions; catalysis;
D O I
10.1110/ps.0202602
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To further investigate the mechanism and function of allosteric activation by chloride in some alpha-amylases, the structure of the bacterial alpha-amylase from the psychrophilic micro-organism Pseudoalteromonas haloplanktis in complex with nitrate has been solved at 2.1 Angstrom, as well as the structure of the mutants Lys300Gln (2.5 Angstrom) and Lys300Arg (2.25 Angstrom). Nitrate binds strongly to alpha-amylase but is a weak activator. Mutation of the critical chloride ligand Lys300 into Gln results in a chloride-independent enzyme, whereas the mutation into Arg mimics the binding site as is found in animal alpha-amylases with, however, a lower affinity for chloride. These structures reveal that the triangular conformation of the chloride ligands and the nearly equatorial coordination allow the perfect accommodation of planar trigonal monovalent anions such as NO3-, explaining their unusual strong binding. It is also shown that a localized negative charge such as that of Cl-, rather than a delocalized charge as in the case of nitrate, is essential for maximal activation. The chloride-free mutant Lys300Gln indicates that chloride is not mandatory for the catalytic mechanism but strongly increases the reactivity at the active site. Disappearance of the putative catalytic water molecule in this weakly active mutant supports the view that chloride helps to polarize the hydrolytic water molecule and enhances the rate of the second step in the catalytic reaction.
引用
收藏
页码:1435 / 1441
页数:9
相关论文
共 30 条
[1]   Structures of the psychrophilic Alteromonas haloplanctis α-amylase give insights into cold adaptation at a molecular level [J].
Aghajari, N ;
Feller, G ;
Gerday, C ;
Haser, R .
STRUCTURE, 1998, 6 (12) :1503-1516
[2]   Crystal structures of the psychrophilic α-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor [J].
Aghajari, N ;
Feller, G ;
Gerday, C ;
Haser, R .
PROTEIN SCIENCE, 1998, 7 (03) :564-572
[3]   Crystallographic evidence of a transglycosylation reaction:: Ternary complexes of a psychrophilic α-amylase [J].
Aghajari, N ;
Roth, M ;
Haser, R .
BIOCHEMISTRY, 2002, 41 (13) :4273-4280
[4]   Crystallization and preliminary X-ray diffraction studies of alpha-amylase from the Antarctic psychrophile Alteromonas haloplanctis A23 [J].
Aghajari, N ;
Feller, G ;
Gerday, C ;
Haser, R .
PROTEIN SCIENCE, 1996, 5 (10) :2128-2129
[5]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[6]   Subsite mapping of the human pancreatic α-amylase active site through structural, kinetic, and mutagenesis techniques [J].
Brayer, GD ;
Sidhu, G ;
Maurus, R ;
Rydberg, EH ;
Braun, C ;
Wang, YL ;
Nguyen, NT ;
Overall, CH ;
Withers, SG .
BIOCHEMISTRY, 2000, 39 (16) :4778-4791
[7]   THE STRUCTURE OF HUMAN PANCREATIC ALPHA-AMYLASE AT 1.8 ANGSTROM RESOLUTION AND COMPARISONS WITH RELATED ENZYMES [J].
BRAYER, GD ;
LUO, YG ;
WITHERS, SG .
PROTEIN SCIENCE, 1995, 4 (09) :1730-1742
[8]   FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES [J].
BRUNGER, AT .
NATURE, 1992, 355 (6359) :472-475
[9]   CRYSTALLOGRAPHIC R-FACTOR REFINEMENT BY MOLECULAR-DYNAMICS [J].
BRUNGER, AT ;
KURIYAN, J ;
KARPLUS, M .
SCIENCE, 1987, 235 (4787) :458-460
[10]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921