Kinetic mechanism for human Rho-Kinase II (ROCK-II)

被引:25
作者
Trauger, JW [1 ]
Lin, FF [1 ]
Turner, MS [1 ]
Stephens, J [1 ]
LoGrasso, PV [1 ]
机构
[1] Merck Res Labs, Dept Mol Neurosci, San Diego, CA 92121 USA
关键词
D O I
10.1021/bi0258243
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rho-Kinase is a serine/threonine kinase that is involved in the regulation of smooth muscle contraction and cytoskeletal reorganization of nonmuscle cells. While the signal transduction pathway in which Rho-Kinase participates has been and continues to be extensively studied, the kinetic mechanism of Rho-Kinase-catalyzed phosphorylation has not been investigated. We report here elucidation of the kinetic mechanism for Rho-Kinase by using steady-state kinetic studies. These studies used the kinase domain of human Rho-Kinase II (ROCK-II 1-534) with S6 peptide (biotin-AKRRRLSSLRA-NH2) as the phosphorylatable substrate. Double-reciprocal plots for two-substrate kinetic data yielded intersecting line patterns with either ATP or S6 peptide as the varied substrate, indicating that Rho-Kinase utilized a ternary complex (sequential) kinetic mechanism. Dead-end inhibition studies were used to investigate the order of binding for ATP and the peptide substrate. The ATP-competitive inhibitors AMP-PCP and Y-27632 were noncompetitive inhibitors versus S6 peptide, and the S6 peptide analogue S6-AA (acetyl-AKRRRLAALRA-NH2) was a competitive inhibitor versus S6 peptide and a noncompetitive inhibitor versus ATP. These results indicated a random order of binding for ATP and S6 peptide.
引用
收藏
页码:8948 / 8953
页数:6
相关论文
共 56 条
[1]   Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase [J].
Amano, M ;
Chihara, K ;
Kimura, K ;
Fukata, Y ;
Nakamura, N ;
Matsuura, Y ;
Kaibuchi, K .
SCIENCE, 1997, 275 (5304) :1308-1311
[2]   Myosin II activation promotes neurite retraction during the action of Rho and Rho-kinase [J].
Amano, M ;
Chihara, K ;
Nakamura, N ;
Fukata, Y ;
Yano, T ;
Shibata, M ;
Ikebe, M ;
Kaibuchi, K .
GENES TO CELLS, 1998, 3 (03) :177-188
[3]   Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase) [J].
Amano, M ;
Ito, M ;
Kimura, K ;
Fukata, Y ;
Chihara, K ;
Nakano, T ;
Matsuura, Y ;
Kaibuchi, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (34) :20246-20249
[4]   Phosphorylation of collapsin response mediator protein-2 by Rho-kinase -: Evidence for two separate signaling pathways for growth cone collapse [J].
Arimura, N ;
Inagaki, N ;
Chihara, K ;
Ménager, C ;
Nakamura, N ;
Amano, M ;
Iwamatsu, A ;
Goshima, Y ;
Kaibuchi, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (31) :23973-23980
[5]   A critical role for a Rho-associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons [J].
Bito, H ;
Furuyashiki, T ;
Ishihara, H ;
Shibasaki, Y ;
Ohashi, K ;
Mizuno, K ;
Maekawa, M ;
Ishizaki, T ;
Narumiya, S .
NEURON, 2000, 26 (02) :431-441
[6]  
BOEMER RJ, 1995, BIOCHEMISTRY-US, V34, P16419
[7]   Kinetic mechanism of the p38-α MAP kinase:: Phosphoryl transfer to synthetic peptides [J].
Chen, GJ ;
Porter, MD ;
Bristol, JR ;
Fitzgibbon, MJ ;
Pazhanisamy, S .
BIOCHEMISTRY, 2000, 39 (08) :2079-2087
[8]   Cytoskeletal rearrangements and transcriptional activation of c-fos serum response element by Rho-kinase [J].
Chihara, K ;
Amano, M ;
Nakamura, N ;
Yano, T ;
Shibata, M ;
Tokui, T ;
Ichikawa, H ;
Ikebe, R ;
Ikebe, M ;
Kaibuchi, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (40) :25121-25127
[9]   Antagonism of Rho-kinase stimulates rat penile erection via a nitric oxide-independent pathway [J].
Chitaley, K ;
Wingard, CJ ;
Webb, RC ;
Branam, H ;
Stopper, VS ;
Lewis, RW ;
Mills, TM .
NATURE MEDICINE, 2001, 7 (01) :119-122
[10]  
Cleland W W, 1979, Methods Enzymol, V63, P103