Closure of the set of diffusion functionals with respect to the mosco-convergence

被引:51
作者
Camar-Eddine, M [1 ]
Seppecher, P [1 ]
机构
[1] Univ Toulon & Var, Lab Anal Non Lineaire Appl & Modelisat, F-83957 La Garde, France
关键词
homogenization; mosco-convergence; P-convergence; Dirichlet forms; composite materials;
D O I
10.1142/S0218202502002069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the functionals which are Mosco-limits, in the L-2(Q) topology, of some sequence of functionals of the kind F-n(u) := integral(Omega) alpha(n)(x)\delu(x)\(2) dx, where Q is a bounded domain of R-N(N greater than or equal to 3). It is known that this family of functionals is included in the closed set of Dirichlet forms. Here, we prove that the set of Dirichlet forms is actually the closure of the set of diffusion functionals. A crucial step is the explicit construction of a composite material whose effective energy contains a very simple nonlocal interaction.
引用
收藏
页码:1153 / 1176
页数:24
相关论文
共 19 条
[1]  
Attouch H., 1984, Applicable Mathematics Series
[2]  
Bellazzi Monza G, 1998, CRITICA LETT, V26, P407
[3]  
Bellieud M, 1996, CR ACAD SCI I-MATH, V323, P1135
[4]   DIRICHLET SPACES [J].
BEURLING, A ;
DENY, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1959, 45 (02) :208-215
[5]  
BRIANE P, 2000, 004827 IRMAR
[6]   GAMMA-LIMITS OF INTEGRAL FUNCTIONALS [J].
BUTTAZZO, G ;
DALMASO, G .
JOURNAL D ANALYSE MATHEMATIQUE, 1980, 37 :145-185
[7]   Non-local interactions resulting from the homogenization of a linear diffusive medium [J].
Camar-Eddine, M ;
Seppecher, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (05) :485-490
[8]  
CAMAREDDINE M, UNPUB CLOSURE SET LI
[9]  
CAMAREDDINE M, THESIS
[10]  
Casado-Diaz J, 2000, CH CRC RES NOTES, V410, P56