Response characteristics of a fractional oscillator

被引:91
作者
Achar, BNN [1 ]
Hanneken, JW [1 ]
Clarke, T [1 ]
机构
[1] Univ Memphis, Memphis, TN 38152 USA
关键词
D O I
10.1016/S0378-4371(02)00609-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The integral equation of motion of a driven fractional oscillator is obtained by generalizing the corresponding equation of motion of a driven harmonic oscillator to include integrals of arbitrary order according to the methods of fractional calculus. The Green's function solution for the fractional oscillator is obtained in terms of Mittag-Leffier functions using Laplace transforms. The response and resonance characteristics of the fractional oscillator are studied for several cases of forcing function. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:275 / 288
页数:14
相关论文
共 21 条
[1]   Dynamics of the fractional oscillator [J].
Achar, BNN ;
Hanneken, JW ;
Enck, T ;
Clarke, T .
PHYSICA A, 2001, 297 (3-4) :361-367
[2]  
[Anonymous], 1998, FRACTIONAL CALCULUS
[3]  
[Anonymous], 1995, TRANSFORM METHODS SP
[4]  
Arfken GeorgeB., 1995, Mathematical Methods for Physicists, Fourth Edition, VFourth
[5]  
Bagley RL, 1979, SHOCK VIBRATION B 2, V49, P135
[6]  
BAGLEY RL, 1987, ASME DE, V5, P125
[7]   DEFINITION OF PHYSICALLY CONSISTENT DAMPING LAWS WITH FRACTIONAL DERIVATIVES [J].
BEYER, H ;
KEMPFLE, S .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1995, 75 (08) :623-635
[8]  
BLANK L, 1996, 287 U MANCH MCCM
[9]  
Erdelyi A, 1955, HIGHER TRANSCENDENTA, V3
[10]   DAMPING DESCRIPTION INVOLVING FRACTIONAL OPERATORS [J].
GAUL, L ;
KLEIN, P ;
KEMPLE, S .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1991, 5 (02) :81-88