How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades

被引:195
作者
Brown, JW
Bullock, D
Grossberg, S
机构
[1] Boston Univ, Dept Cognit & Neural Syst, Boston, MA 02215 USA
[2] Washington Univ, Dept Psychol, St Louis, MO 63130 USA
[3] Boston Univ, Ctr Adapt Syst, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
basal ganglia; frontal cortex; cortical layer; saccade; gating; dopamine; reinforcement learning; action selection; planning; Parkinson's disease;
D O I
10.1016/j.neunet.2003.08.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
How does the brain learn to balance between reactive and planned behaviors? The basal ganglia (BG) and frontal cortex together allow animals to learn planned behaviors that acquire rewards when prepotent reactive behaviors are insufficient. This paper proposes a new model, called TELOS, to explain how laminar circuitry of the frontal cortex, exemplified by the frontal eye fields, interacts with the BG, thalamus, superior colliculus, and inferotemporal and parietal cortices to learn and perform reactive and planned eye movements. The model is formulated as fourteen Computational hypotheses. These specify how strategy priming and action planning (in cortical layers III, Va and VI) are dissociated from movement execution (in layer Vb), how the BG help to choose among and gate competing plans, and how a visual stimulus may serve either as a movement target or as a discriminative cue to move elsewhere. The direct, indirect and hyperdirect pathways through the BG are shown to enable complex gating functions, including deferred execution of selected plans, and switching among alternative sensory-motor mappings. Notably, the model can learn and gate the use of a What-to-Where transformation that enables spatially invariant object representations to selectively excite spatially coded movement plans. Model simulations show how dopaminergic reward and non-reward signals guide monkeys to learn and perform saccadic eye movements in the fixation, single saccade, overlap, gap, and delay (memory-guided) saccade tasks. Model cell activation dynamics quantitatively simulate seventeen established types of dynamics exhibited by corresponding real cells during performance of these tasks. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:471 / 510
页数:40
相关论文
共 205 条
[1]   THE FUNCTIONAL-ANATOMY OF BASAL GANGLIA DISORDERS [J].
ALBIN, RL ;
YOUNG, AB ;
PENNEY, JB .
TRENDS IN NEUROSCIENCES, 1989, 12 (10) :366-375
[2]  
Aldridge JW, 1998, J NEUROSCI, V18, P2777
[3]   FUNCTIONAL ARCHITECTURE OF BASAL GANGLIA CIRCUITS - NEURAL SUBSTRATES OF PARALLEL PROCESSING [J].
ALEXANDER, GE ;
CRUTCHER, MD .
TRENDS IN NEUROSCIENCES, 1990, 13 (07) :266-271
[4]   Primate antisaccades. I. Behavioral characteristics [J].
Amador, N ;
Schlag-Rey, M ;
Schlag, J .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 80 (04) :1775-1786
[5]   A computational model of information processing in the frontal cortex and basal ganglia [J].
Amos, A .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2000, 12 (03) :505-519
[6]  
[Anonymous], 1985, EXP BRAIN RES
[7]  
[Anonymous], [No title captured]
[8]  
ARBIB MA, 1995, MODELS INFORMATION P, P149
[9]   Task-specific neural activity in the primate prefrontal cortex [J].
Asaad, WF ;
Rainer, G ;
Miller, EK .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 84 (01) :451-459
[10]   Parallel processing of serial movements in prefrontal cortex [J].
Averbeck, BB ;
Chafee, MV ;
Crowe, DA ;
Georgopoulos, AP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :13172-13177