Modulation of astroglial energy metabolism by nitric oxide

被引:36
作者
Bolanos, Juan P.
Almeida, Angeles
机构
[1] Univ Salamanca, Inst Neurociencias Castilla & Leon, Ctr Nacl Invest Cardiovasc, Dept Bioquim & Biol Mol,Edificio Departamental, Salamanca 37007, Spain
[2] Hosp Univ Salamanca, Unidad Invest, Salamanca, Spain
关键词
D O I
10.1089/ars.2006.8.955
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Activated astroglial cells produce large amounts of nitric oxide (NO) which, through the binding to soluble guanylyl cyclase, rapidly increases cyclic GMP concentrations. In addition, through the binding with the a-a(3) binuclear center of cytochrome c oxidase, NO rapidly decreases the affinity of this complex for O-2, hence reversibly inhibiting the mitochondrial electron flux and ATP synthesis. Despite promoting a profound degree of mitochondrial inhibition, astrocytes show remarkable resistance to NO and peroxynitrite, whereas neurons are highly vulnerable. Recent evidence suggests that the inhibition of mitochondrial respiration by these nitrogen-derived reactive species leads to the modulation of key regulatory steps of glucose metabolism. Thus, upregulation of glucose uptake, the stimulation of glycolysis and the activation of pentose-phosphate pathway appear to be important sites of action. The stimulation of these glucose-metabolizing pathways by NO would represent a transient attempt by the glial cells to compensate for energy impairment and oxidative stress, and thus to emerge from an otherwise pathological outcome.
引用
收藏
页码:955 / 965
页数:11
相关论文
共 121 条
[1]   MODULATION OF GLUCOSE-METABOLISM IN MACROPHAGES BY PRODUCTS OF NITRIC-OXIDE SYNTHASE [J].
ALBINA, JE ;
MASTROFRANCESCO, B .
AMERICAN JOURNAL OF PHYSIOLOGY, 1993, 264 (06) :C1594-C1599
[2]   Different responses of astrocytes and neurons to nitric oxide:: The role of glycolytically generated ATP in astrocyte protection [J].
Almeida, A ;
Almeida, J ;
Bolaños, JP ;
Moncada, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (26) :15294-15299
[3]   A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons [J].
Almeida, A ;
Bolaños, JP .
JOURNAL OF NEUROCHEMISTRY, 2001, 77 (02) :676-690
[4]   Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway [J].
Almeida, A ;
Moncada, S ;
Bolaños, JP .
NATURE CELL BIOLOGY, 2004, 6 (01) :45-U9
[5]   A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis [J].
Barbeito, LH ;
Pehar, M ;
Cassina, P ;
Vargas, MR ;
Peluffo, H ;
Viera, L ;
Estévez, AG ;
Beckman, JS .
BRAIN RESEARCH REVIEWS, 2004, 47 (1-3) :263-274
[6]   Glutathione protects astrocytes from peroxynitrite-mediated mitochondrial damage: Implications for neuronal astrocytic trafficking and neurodegeneration [J].
Barker, JE ;
Bolanos, JP ;
Land, JM ;
Clark, JB ;
Heales, SJR .
DEVELOPMENTAL NEUROSCIENCE, 1996, 18 (5-6) :391-396
[7]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[8]   KINETICS OF SUPEROXIDE DISMUTASE-CATALYZED AND IRON-CATALYZED NITRATION OF PHENOLICS BY PEROXYNITRITE [J].
BECKMAN, JS ;
ISCHIROPOULOS, H ;
ZHU, L ;
VANDERWOERD, M ;
SMITH, C ;
CHEN, J ;
HARRISON, J ;
MARTIN, JC ;
TSAI, M .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1992, 298 (02) :438-445
[9]   The effect of nitric oxide on cell respiration:: A key to understanding its role in cell survival or death [J].
Beltrán, B ;
Mathur, A ;
Duchen, MR ;
Erusalimsky, JD ;
Moncada, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (26) :14602-14607
[10]  
BenYoseph O, 1996, J NEUROCHEM, V66, P2329