Vertical and temporal shifts in microbial communities in the water column and sediment of saline meromictic Lake Kaiike (Japan), as determined by a 16S rDNA-based analysis, and related to physicochemical gradients

被引:67
作者
Koizumi, Y [1 ]
Kojima, H [1 ]
Oguri, K [1 ]
Kitazato, H [1 ]
Fukui, M [1 ]
机构
[1] Japam Marine Sci& Technol Ctr, Inst Frontier Rea Earth Evolut, Kanagawa, Japan
关键词
D O I
10.1111/j.1462-2920.2004.00620.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The vertical and temporal changes in microbial communities were investigated throughout the water column and sediment of the saline meromictic Lake Kaiike by PCR-denaturing gradient gel electrophoresis (DGGE) of 16S rDNA. Marked depth-related changes in microbial communities were observed at the chemocline and the sediment-water interface. However, no major temporal changes in the microbial community below the chemocline were observed during the sampling period, suggesting that the ecosystem in the anoxic zone of Lake Kaiike was nearly stable. Although the sequence of the most conspicuous DGGE band throughout the anoxic water and in the top of the microbial mat was most similar to that of an anoxic, photosynthetic, green sulphur bacterium, Pelodyction luteolum DSM273 (97% similarity), it represented a new phylotype. A comparison of DGGE banding patterns of the water column and sediment samples demonstrated that specific bacteria accumulated on the bottom from the anoxic water layers, and that indigenous microbial populations were present in the sediment. The measurements of bicarbonate assimilation rates showed significant phototrophic assimilation in the chemocline and lithoautotrophic assimilation throughout the anoxic water, but were not clearly linked with net sulphide turnover rates, indicating that sulphur and carbon metabolisms were not directly correlated.
引用
收藏
页码:622 / 637
页数:16
相关论文
共 62 条
[1]   Determination of low-molecular-weight organic acid concentrations in seawater and pore-water samples via HPLC [J].
Albert, DB ;
Martens, CS .
MARINE CHEMISTRY, 1997, 56 (1-2) :27-37
[2]   Phylogeny of green sulfur bacteria on the basis of gene sequences of 16S rRNA and of the Fenna-Matthews-Olson protein [J].
Alexander, B ;
Andersen, JH ;
Cox, RP ;
Imhoff, JF .
ARCHIVES OF MICROBIOLOGY, 2002, 178 (02) :131-140
[3]   MOLECULAR AND MICROSCOPIC IDENTIFICATION OF SULFATE-REDUCING BACTERIA IN MULTISPECIES BIOFILMS [J].
AMANN, RI ;
STROMLEY, J ;
DEVEREUX, R ;
KEY, R ;
STAHL, DA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1992, 58 (02) :614-623
[4]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[5]   COMBINATION OF 16S RIBOSOMAL-RNA-TARGETED OLIGONUCLEOTIDE PROBES WITH FLOW-CYTOMETRY FOR ANALYZING MIXED MICROBIAL-POPULATIONS [J].
AMANN, RI ;
BINDER, BJ ;
OLSON, RJ ;
CHISHOLM, SW ;
DEVEREUX, R ;
STAHL, DA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1990, 56 (06) :1919-1925
[6]  
[Anonymous], 1996, MOL MICROBIAL ECOLOG
[7]  
[Anonymous], 1972, A Practical Handbook of Seawater Analysis, DOI [DOI 10.1002/IROH.19700550118, DOI 10.25607/OBP-1791]
[8]   Seasonal and spatial community dynamics in the meromictic Lake Cadagno [J].
Bosshard, PP ;
Stettler, R ;
Bachofen, R .
ARCHIVES OF MICROBIOLOGY, 2000, 174 (03) :168-174
[9]   Microheterogeneity in 16S ribosomal DNA-defined bacterial populations from a stratified planktonic environment is related to temporal changes and to ecological adaptations [J].
Casamayor, EO ;
Pedrós-Alió, C ;
Muyzer, G ;
Amann, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (04) :1706-1714
[10]  
CLEVEN BEE, 1997, SYST APPL MICROBIOL, V20, P301