Balloon-borne stratospheric BrO measurements:: comparison with Envisat/SCIAMACHY BrO limb profiles

被引:38
作者
Dorf, M. [1 ]
Boesch, H.
Butz, A.
Camy-Peyret, C.
Chipperfield, M. P.
Engel, A.
Goutail, F.
Grunow, K.
Hendrick, F.
Hrechanyy, S.
Naujokat, B.
Pommereau, J. -P.
Van Roozendael, M.
Sioris, C.
Stroh, F.
Weidner, F.
Pfeilsticker, K.
机构
[1] Heidelberg Univ, Inst Umweltphys, D-6900 Heidelberg, Germany
[2] Univ Paris 06, LPMAA, Paris, France
[3] Univ Leeds, Sch Earth & Environm, Inst Atmospher Sci, Leeds, W Yorkshire, England
[4] Goethe Univ Frankfurt, Inst Atmosphere & Environm, D-6000 Frankfurt, Germany
[5] CNRS, Serv Aeron, F-91371 Verrieres Le Buisson, France
[6] Free Univ Berlin, Inst Meteorol, D-1000 Berlin, Germany
[7] Belgian Inst Space Aeron, BIRA, IASB, Brussels, Belgium
[8] Forschungszentrum Julich, Inst Chem & Dynam Geosphare ICG Stratosphare 1, Julich, Germany
[9] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
关键词
D O I
10.5194/acp-6-2483-2006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
For the first time, results of four stratospheric BrO profiling instruments, are presented and compared with reference to the SLIMCAT 3-dimensional chemical transport model (3-D CTM). Model calculations are used to infer a BrO profile validation set, measured by 3 different balloon sensors, for the new Envisat/SCIAMACHY (ENVIronment SATellite/SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) satellite instrument. The balloon observations include ( a) balloon-borne in situ resonance fluorescence detection of BrO ( Triple), (b) balloon-borne solar occultation DOAS measurements ( Differential Optical Absorption Spectroscopy) of BrO in the UV, and ( c) BrO profiling from the solar occultation SAOZ ( Systeme d'Analyse par Observation Zenithale) balloon instrument. Since stratospheric BrO is subject to considerable diurnal variation and none of the measurements are performed close enough in time and space for a direct comparison, all balloon observations are considered with reference to outputs from the 3-D CTM. The referencing is performed by forward and backward air mass trajectory calculations to match the balloon with the satellite observations. The diurnal variation of BrO is considered by 1-D photochemical model calculation along the trajectories. The 1-D photochemical model is initialised with output data of the 3-D model with additional constraints on the vertical transport, the total amount and photochemistry of stratospheric bromine as given by the various balloon observations. Total [Br-y]=(20.1 +/- 2.5) pptv obtained from DOAS BrO observations at mid-latitudes in 2003, serves as an upper limit of the comparison. Most of the balloon observations agree with the photochemical model predictions within their given error estimates. First retrieval exercises of BrO limb profiling from the SCIAMACHY satellite instrument on average agree to around 20% with the photochemically-corrected balloon observations of the remote sensing instruments (SAOZ and DOAS). An exception is the in situ Triple profile, in which the balloon and satellite data mostly does not agree within the given errors. In general, the satellite measurements show systematically higher values below 25 km than the balloon data and a change in profile shape above about 25 km.
引用
收藏
页码:2483 / 2501
页数:19
相关论文
共 55 条
[1]   Analysis for BrO in zenith-sky spectra: An intercomparison exercise for analysis improvement [J].
Aliwell, SR ;
Van Roozendael, M ;
Johnston, PV ;
Richter, A ;
Wagner, T ;
Arlander, DW ;
Burrows, JP ;
Fish, DJ ;
Jones, RL ;
Tornkvist, KK ;
Lambert, JC ;
Pfeilsticker, K ;
Pundt, I .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D14) :10-1
[2]   Upper limits of stratospheric IO and OIO inferred from center-to-limb-darkening-corrected balloon-borne solar occultation visible spectra:: Implications for total gaseous iodine and stratospheric ozone -: art. no. 4455 [J].
Bösch, H ;
Camy-Peyret, C ;
Chipperfield, MP ;
Fitzenberger, R ;
Harder, H ;
Platt, U ;
Pfeilsticker, K .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D15)
[3]   Comparison of measured and modeled stratospheric UV/visible actinic fluxes at large solar zenith angles [J].
Bösch, H ;
Camy-Peyret, C ;
Chipperfield, M ;
Fitzenberger, R ;
Harder, H ;
Schiller, C ;
Schneider, M ;
Trautmann, T ;
Pfeilsticker, K .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (07) :1179-1182
[4]  
Bovensmann H, 1999, J ATMOS SCI, V56, P127, DOI 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO
[5]  
2
[6]   Using a photochemical model for the validation of NO2 satellite measurements at different solar zenith angles [J].
Bracher, A ;
Sinnhuber, M ;
Rozanov, A ;
Burrows, JP .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :393-408
[7]   INSITU OBSERVATIONS OF CLO IN THE ANTARCTIC - ER-2 AIRCRAFT RESULTS FROM 54-DEGREES-S TO 72-DEGREES-S LATITUDE [J].
BRUNE, WH ;
ANDERSON, JG ;
CHAN, KR .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1989, 94 (D14) :16649-16663
[8]  
BUTZ A, 2005, ATMOS CHEM PHYS DISC, V5, P10747
[9]   STRATOSPHERIC N2O5,CH4, AND N2O PROFILES FROM IR SOLAR OCCULTATION SPECTRA [J].
CAMYPEYRET, C ;
FLAUD, JM ;
PERRIN, A ;
RINSLAND, CP ;
GOLDMAN, A ;
MURCRAY, FJ .
JOURNAL OF ATMOSPHERIC CHEMISTRY, 1993, 16 (01) :31-40
[10]   Nighttime OClO in the winter Arctic vortex -: art. no. D01301 [J].
Canty, T ;
Rivière, ED ;
Salawitch, RJ ;
Berthet, G ;
Renard, JB ;
Pfeilsticker, K ;
Dorf, M ;
Butz, A ;
Bösch, H ;
Stimpfle, RM ;
Wilmouth, DM ;
Richard, EC ;
Fahey, DW ;
Popp, PJ ;
Schoeberl, MR ;
Lait, LR ;
Bui, TP .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D1) :1-13