Determination of the in vivo cavitation nuclei characteristics of blood

被引:9
作者
Chambers, SD
Bartlett, RH
Ceccio, SL
机构
[1] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Surg, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Mech Engn & Appl Mech, Ann Arbor, MI 48109 USA
关键词
D O I
10.1097/00002480-199911000-00007
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cavitation has been documented in the in vitro testing of blood-handling devices. To predict whether cavitation will occur clinically, the nuclei content of blood and the threshold pressure for activation of the in situ nuclei must be characterized. A single-pass flow apparatus is described for determining the nuclei characteristics of blood. The flow apparatus consists of a syringe pump and a venturi-geometry hydrodynamic device, called a cavitation susceptibility meter (CSM). Blood is accelerated through the throat of the CSM, thus exposing the nuclei in the blood to a well-defined pressure profile. The apparatus was used in an ex vivo sheep model for the determination of the in vivo nuclei characteristics of blood. The active nuclei concentration of in vivo blood was measured to be at most 2.7 nuclei per liter of plasma at a minimum throat pressure of -1610 mm Hg gauge (i.e., tension of 900 mm Hg). At this pressure, bubble stability theory predicts the active nuclei to have a radius on the order of 0.3 mu m. Based on these results, in vitro studies to determine the cavitation potential of blood-handling devices must utilize test fluids that contain a minimum nuclei size distribution and concentration. It cannot be assumed that in vivo blood is nuclei rich, such that it will cavitate at or near vapor pressure.
引用
收藏
页码:541 / 549
页数:9
相关论文
共 54 条
[1]  
[Anonymous], 2013, Biomechanics: Motion, Flow, Stress, and Growth
[2]  
BILLET ML, 1985, P 1985 ASME CAV MULT, P31
[3]  
Brennen C. E., 1995, CAVITATION BUBBLE DY, DOI DOI 10.1017/CBO9781107338760
[4]   Dual-camera DPIV for flow studies past artificial heart valves [J].
Brucker, C .
EXPERIMENTS IN FLUIDS, 1997, 22 (06) :496-506
[5]  
CECCIO SL, 1995, P ASME S CAV GAS LIQ, P43
[6]  
Chahine GL, 1996, J HEART VALVE DIS, V5, P207
[7]   Effects of static pressure on red blood cells on removal of the air interface [J].
Chambers, SD ;
Laberteaux, KR ;
Merz, SI ;
Montoya, JP ;
Bartlett, RH .
ASAIO JOURNAL, 1996, 42 (06) :947-950
[8]  
CHAMBERS SD, 1998, THESIS U MICHIGAN
[9]  
Chandran K B, 1994, J Heart Valve Dis, V3 Suppl 1, pS65
[10]   EFFECT OF PROSTHETIC MITRAL-VALVE GEOMETRY AND ORIENTATION ON FLOW DYNAMICS IN A MODEL HUMAN LEFT-VENTRICLE [J].
CHANDRAN, KB ;
SCHOEPHOERSTER, R ;
DELLSPERGER, KC .
JOURNAL OF BIOMECHANICS, 1989, 22 (01) :51-&