Iterative methods for the computation of a few eigenvalues of a large symmetric matrix

被引:34
作者
Baglama, J
Calvetti, D
Reichel, L
机构
[1] KENT STATE UNIV, DEPT MATH & COMP SCI, KENT, OH 44242 USA
[2] STEVENS INST TECHNOL, DEPT MATH SCI, HOBOKEN, NJ 07030 USA
关键词
restarted Lanczos method; Leja points; polynomial acceleration;
D O I
10.1007/BF01731924
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The task of computing a few eigenvalues and associated eigenvectors of a large sparse symmetric matrix arises in many applications. We present new iterative methods designed for the determination of a few extreme or non-extreme eigenvalues and associated eigenvectors. Our methods are based on the recursion formulas of the Implicitly Restarted Lanczos method introduced by Sorensen [1992], but differ from previous applications of these formulas in the selection of accelerating polynomial. The methods of the present paper require very little computer storage. Numerical examples illustrate that the methods can give rapid convergence.
引用
收藏
页码:400 / 421
页数:22
相关论文
共 41 条
[1]  
BJORCK A, 1994, BIT, V34, P510, DOI 10.1007/BF01934265
[2]  
BJORCK A, 1994, LINEAR ALGEBRA APPL, V34, P510
[3]  
BJORCK A, 1994, NUMERICS GRAM SCHMID, V197, P297
[4]  
Calvetti D., 1994, ELECTRON T NUMER ANA, V2, P1
[5]  
CALVETTI D, IN PRESS NUMER ALGOR
[6]  
Cline Alan K., 1976, Sparse Matrix Computations, P409, DOI DOI 10.1016/B978-0-12-141050-6.50029
[7]  
Cullum J. K., 1985, LANCZOS ALGORITHMS L, V1
[8]  
EDREI A, 1939, COMPOS MATH, V7, P20
[9]   THE SPECTRAL TRANSFORMATION LANCZOS METHOD FOR THE NUMERICAL-SOLUTION OF LARGE SPARSE GENERALIZED SYMMETRIC EIGENVALUE PROBLEMS [J].
ERICSSON, T ;
RUHE, A .
MATHEMATICS OF COMPUTATION, 1980, 35 (152) :1251-1268
[10]  
FARRELL PA, 1992, COMPUTATIONAL AND APPLIED MATHEMATICS, 1, P137