A general maximum likelihood analysis of overdispersion in generalized linear models

被引:128
作者
Aitkin, M [1 ]
机构
[1] UNIV WESTERN AUSTRALIA,DEPT MATH,NEDLANDS,WA 6907,AUSTRALIA
关键词
overdispersion; random effects GLM; EM algorithm; mixture model;
D O I
10.1007/BF00140869
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents an EM algorithm for maximum likelihood estimation in generalized linear models with overdispersion. The algorithm is initially derived as a form of Gaussian quadrature assuming a normal mixing distribution, but with only slight variation it can be used for a completely unknown mixing distribution, giving a straightforward method for the fully non-parametric ML estimation of this distribution. This is of value because the ML estimates of the GLM parameters may be sensitive to the specification of a parametric form for the mixing distribution. A listing of a GLIM4 algorithm for fitting the overdispersed binomial logit model is given in an appendix. A simple method is given for obtaining correct standard errors for parameter estimates when using the EM algorithm. Several examples are discussed.
引用
收藏
页码:251 / 262
页数:12
相关论文
共 40 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[3]   MIXTURE-MODELS, OUTLIERS, AND THE EM ALGORITHM [J].
AITKIN, M ;
WILSON, GT .
TECHNOMETRICS, 1980, 22 (03) :325-331
[4]  
AITKIN M, 1996, IN PRESS STAT COMPUT
[5]  
AITKIN M, 1996, GEN MAXIMUM LIKELIHO
[6]  
Aitkin M., 1989, STAT MODELLING GLIM
[7]   RANDOM EFFECTS IN GENERALIZED LINEAR-MODELS AND THE EM ALGORITHM [J].
ANDERSON, DA ;
HINDE, JP .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1988, 17 (11) :3847-3856
[8]  
ANDERSON DA, 1985, J R STAT SOC B, V47, P203
[9]  
Anderson DA., 1988, Aust J Stat, V30, P125, DOI [10.1111/j.1467-842X.1988.tb00844.x, DOI 10.1111/J.1467-842X.1988.TB00844.X]
[10]  
[Anonymous], GLIM NEWSLETTER