The first ICRF heating experiment in the Large Helical Device

被引:22
作者
Mutoh, T
Kumazawa, R
Seki, T
Saito, K
Shimpo, F
Nomura, G
Watari, T
Jikang, X
Cattanei, G
Okada, H
Ohkubo, K
Sato, M
Kubo, S
Shimozuma, T
Idei, H
Yoshimura, Y
Kaneko, O
Takeiri, Y
Osakabe, M
Oka, Y
Tsumori, K
Komori, A
Yamada, H
Watanabe, KY
Sakakibara, S
Shoji, M
Sakamoto, R
Inagaki, S
Miyazawa, J
Morita, S
Tanaka, K
Peterson, BJ
Murakami, S
Minami, T
Ohdachi, S
Kado, S
Narihara, K
Sasao, H
Suzuki, H
Kawahata, K
Ohyabu, N
Nakamura, Y
Funaba, H
Masuzaki, S
Muto, S
Sato, K
Morisaki, T
Sudo, S
Nagayama, Y
Watanabe, T
机构
[1] Natl Inst Fus Sci, Toki 5095292, Japan
[2] Nagoya Univ, Fac Engn, Nagoya, Aichi 464, Japan
[3] Acad Sinica, Inst Plasma Phys, Hefei 230031, Peoples R China
[4] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany
[5] Kyoto Univ, Inst Adv Energy, Kyoto, Japan
关键词
D O I
10.1088/0741-3335/42/3/304
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The first experiment of the ion cyclotron range of frequencies (ICRF) heating in the Large Helical Device (LHD) was carried out at the end of 1998. The LHD is a large superconducting heliotron device and its first plasma was produced in March 1998. During the ICRF heating experiment, a maximum 300 kW/0.2 s of ICRF power was injected into the LHD plasma by using a pair of loop antennae. This paper reports on the installation of the loop antennae, the results of antenna coupling and the first heating experiments. The antennae are designed to operate in the steady state and to change their distance from the plasma by 0-15 cm. in the experiment, the antenna resistance coupled with the plasma was measured by changing the distance between the last closed flux surface and the launcher front from 9 cm to 5 cm. The resistance was almost doubled by decreasing the distance. The target plasma was produced by the second harmonic electron cyclotron heating (ECH) of 84 GHz gyrotrons at a magnetic field of 1.5 T and a low plasma electron density of less than 1 x 10(19) m(-3). Therefore, the low coupling resistance limited the maximum injected power to less than 300 kW. The heating efficiency and heating species were varied by the minority ion gas-puffing rate. The heating characteristics were compared with a one-dimensional full-wave analysis code, and the experimental results were consistent with wave damping analysis. For the optimum condition of the minority hydrogen gas-puff ratio, the plasma internal energy increased from 13 kJ to 26 kJ by almost the same power as the ECH power.
引用
收藏
页码:265 / 274
页数:10
相关论文
共 14 条
[1]  
FUJIWARA M, 1999, P 26 EUR PHYS SOC C
[2]   KINETIC DESCRIPTION OF PROPAGATION AND ABSORPTION STRUCTURES OF ICRF WAVES [J].
FUKUYAMA, A ;
NISHIYAMA, S ;
ITOH, K ;
ITOH, SI .
NUCLEAR FUSION, 1983, 23 (08) :1005-1016
[3]  
HARTMANN G, 1998, P 17 IAEA FUS EN C
[4]  
KUMAZAWA R, 1999, J PLASMA FUSION RES, V75, P842
[5]   FAST WAVE HEATING EXPERIMENTS IN THE ION-CYCLOTRON RANGE OF FREQUENCIES ON ATF [J].
KWON, M ;
SHEPARD, TD ;
GOULDING, RH ;
THOMAS, CE ;
COLCHIN, RJ ;
WADE, MR ;
JAEGER, EF ;
CARTER, MD ;
BAITY, FW ;
BATCHELOR, DB ;
BELL, GL ;
BELL, JD ;
BIGELOW, TS ;
CRUME, EC ;
ENGLAND, AC ;
GLOWIENKA, JC ;
HIROE, S ;
HORTON, LD ;
HOFFMAN, DJ ;
ISLER, RC ;
LANGLEY, RA ;
LEE, DK ;
MURAKAMI, M ;
PAINTER, SL ;
RASMUSSEN, DA ;
SWAIN, DW ;
UCKAN, T ;
WILGEN, JB ;
WING, WR .
NUCLEAR FUSION, 1992, 32 (07) :1225-1240
[6]   Strong electron heating in CHS ICRF heating experiments [J].
Masuda, S ;
Kumazawa, R ;
Nishimura, K ;
Mutoh, T ;
Watari, T ;
Simbo, F ;
Seki, T ;
Ido, T ;
Akiyama, R ;
Ando, A ;
Ejiri, A ;
Idei, H ;
Ida, K ;
Iguchi, H ;
Isobe, M ;
Iwase, M ;
Kubo, S ;
Matsuoka, K ;
Morisaki, T ;
Morita, S ;
Mutoh, S ;
Murakami, S ;
Okamura, S ;
Ozaki, T ;
Sakakibara, S ;
Sasao, M ;
Takahashi, C ;
Kawamoto, T ;
Tanaka, K ;
Xu, J ;
Yamada, H ;
Yamada, I ;
Rasmussen, DA ;
Lyon, JF ;
Wilgen, JB ;
Greenwood, DE ;
Hoffman, DJ ;
Jaeger, EF ;
Murakami, M .
NUCLEAR FUSION, 1997, 37 (01) :53-68
[7]   Initial physics achievements of large helical device experiments [J].
Motojima, O ;
Yamada, H ;
Komori, A ;
Ohyabu, N ;
Kawahata, K ;
Kaneko, O ;
Masuzaki, S ;
Ejiri, A ;
Emoto, M ;
Funaba, H ;
Goto, M ;
Ida, K ;
Idei, H ;
Inagaki, S ;
Inoue, N ;
Kado, S ;
Kubo, S ;
Kumazawa, R ;
Minami, T ;
Miyazawa, J ;
Morisaki, T ;
Morita, S ;
Murakami, S ;
Muto, S ;
Mutoh, T ;
Nagayama, Y ;
Nakamura, Y ;
Nakanishi, H ;
Narihara, K ;
Nishimura, K ;
Noda, N ;
Kobuchi, T ;
Ohdachi, S ;
Oka, Y ;
Osakabe, M ;
Ozaki, T ;
Peterson, BJ ;
Sagara, A ;
Sakakibara, S ;
Sakamoto, R ;
Sasao, H ;
Sasao, M ;
Sato, K ;
Sato, M ;
Seki, T ;
Shimozuma, T ;
Shoji, M ;
Suzuki, H ;
Takeiri, Y ;
Tanaka, K .
PHYSICS OF PLASMAS, 1999, 6 (05) :1843-1850
[8]   MONTE-CARLO SIMULATION STUDY OF ICRF MINORITY HEATING IN THE LARGE HELICAL DEVICE [J].
MURAKAMI, S ;
OKAMOTO, M ;
NAKAJIMA, N ;
OHNISHI, M ;
OKADA, H .
NUCLEAR FUSION, 1994, 34 (07) :913-925
[9]   Steady-state tests of high-voltage ceramic feedthroughs and coaxial transmission line for ICRF heating system of the large helical device [J].
Mutoh, T ;
Kumazawa, R ;
Seki, T ;
Simpo, F ;
Nomura, G ;
Ido, T ;
Watari, T ;
Noterdaeme, JM ;
Zhao, YP .
FUSION TECHNOLOGY, 1999, 35 (03) :297-308
[10]   ICRF HEATING OF CURRENTLESS PLASMA IN HELIOTRON-E [J].
MUTOH, T ;
OKADA, H ;
MOTOJIMA, O ;
MORIMOTO, S ;
SATO, M ;
ZUSHI, H ;
KONDO, K ;
SUDO, S ;
BESSHOU, S ;
MIZUUCHI, T ;
KANEKO, H ;
SANO, F ;
IIMA, M ;
OBIKI, T ;
IIYOSHI, A ;
UO, K .
NUCLEAR FUSION, 1984, 24 (08) :1003-1012