Likelihood-Based Sufficient Dimension Reduction

被引:116
作者
Cook, R. Dennis [1 ]
Forzani, Liliana [2 ,3 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Consejo Nacl Invest Cient & Tecn, Inst Matemat Aplicada Litoral, RA-3000 Santa Fe, Argentina
[3] Univ Nacl Litoral, Fac Ingn Quim, RA-3000 Santa Fe, Argentina
基金
美国国家科学基金会;
关键词
Central subspace; Directional regression; Grassmann manifolds; Sliced average variance estimations; Sliced inverse regression; SLICED INVERSE REGRESSION;
D O I
10.1198/jasa.2009.0106
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We obtain the maximum likelihood estimator of the central subspace under conditional normality of the predictors given the response. Analytically and in simulations we found that our new estimator can preform much better than sliced inverse regression, sliced average variance estimation and directional regression, and that it seems quite robust to deviations from normality.
引用
收藏
页码:197 / 208
页数:12
相关论文
共 20 条
[1]   Graphical methods for class prediction using dimension reduction techniques on DNA microarray data [J].
Bura, E ;
Pfeiffer, RM .
BIOINFORMATICS, 2003, 19 (10) :1252-1258
[2]  
Burnham K, 2002, MODELS SELECTION MUL
[3]  
Chikuse Chikuse Y. Y., Lecture Notes in Statistics)
[4]  
Cook R. D., 1994, P SECT PHYS ENG SCI, P18
[5]  
COOK RD, 1991, J AM STAT ASSOC, V86, P328, DOI 10.2307/2290564
[6]   Dimension reduction and visualization in discriminant analysis (with discussion) [J].
Cook, RD ;
Yin, XR .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2001, 43 (02) :147-177
[7]   Sufficient dimension reduction via inverse regression: A minimum discrepancy approach [J].
Cook, RD ;
Ni, LQ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (470) :410-428
[8]  
Cook RD, 1998, WILEY PROB STAT
[9]   ASYMPTOTICS OF GRAPHICAL PROJECTION PURSUIT [J].
DIACONIS, P ;
FREEDMAN, D .
ANNALS OF STATISTICS, 1984, 12 (03) :793-815
[10]   On directional regression for dimension reduction [J].
Li, Bing ;
Wang, Shaoli .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (479) :997-1008