Stretched exponentials and barrier distributions

被引:55
作者
Edholm, O [1 ]
Blomberg, C [1 ]
机构
[1] Royal Inst Technol, SE-10044 Stockholm, Sweden
关键词
D O I
10.1016/S0301-0104(99)00349-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Non exponential relaxation in complex macromolecular systems may be the consequence of dispersedness giving rise to different free energy barriers for different molecules. An approximate analytic formula that relates the time derivative of the decaying function to a probability distribution for the barrier is derived. From this, so called stretched exponentials, e(-t beta),are obtained from barrier distributions with width k(B)T/beta in energy and some asymmetry towards low energies. They may be represented as double exponential functions. An exact general formula that relates the Fourier transforms of the barrier height distribution and the time decaying function is also derived. This is gives a much more stable method for the numerical determination of the barrier height distribution than direct inversion of the Laplace transform. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:221 / 225
页数:5
相关论文
共 14 条
[1]   Conformational transitions monitored for single molecules in solution [J].
Edman, L ;
Mets, U ;
Rigler, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (13) :6710-6715
[2]   THE ENERGY LANDSCAPES AND MOTIONS OF PROTEINS [J].
FRAUENFELDER, H ;
SLIGAR, SG ;
WOLYNES, PG .
SCIENCE, 1991, 254 (5038) :1598-1603
[3]  
FRAUENFELDER H, 1988, ANNU REV BIOPHYS BIO, V17, P451
[4]  
Glasstone S., 1941, THEORY RATE PROCESSE
[5]  
HANGGI P, 1990, REV MOD PHYS, V62, P251, DOI 10.1103/RevModPhys.62.251
[6]  
Kohlrausch R., 1847, ANN PHYS-NEW YORK, V72, P353
[7]  
KRAMERS HA, 1941, PHYSICA, V7, P264
[8]  
LIEBOVITCH LS, 1991, B MATH BIOL, V53, P443, DOI 10.1016/S0092-8240(05)80397-0
[9]   ION CHANNEL KINETICS - A MODEL BASED ON FRACTAL SCALING RATHER THAN MULTISTATE MARKOV-PROCESSES [J].
LIEBOVITCH, LS ;
FISCHBARG, J ;
KONIAREK, JP .
MATHEMATICAL BIOSCIENCES, 1987, 84 (01) :37-68
[10]   DETAILED COMPARISON OF THE WILLIAMS-WATTS AND COLE-DAVIDSON FUNCTIONS [J].
LINDSEY, CP ;
PATTERSON, GD .
JOURNAL OF CHEMICAL PHYSICS, 1980, 73 (07) :3348-3357