Making the Most of a Scarce Platinum-Group Metal: Conductive Ruthenia Nanoskins on Insulating Silica Paper

被引:29
作者
Chervin, Christopher N. [1 ]
Lubers, Alia M. [1 ]
Pettigrew, Katherine A. [1 ]
Long, Jeffrey W. [1 ]
Westgate, Mark A. [2 ]
Fontanella, John J. [2 ]
Rolison, Debra R. [1 ]
机构
[1] USN, Res Lab, Surface Chem Branch, Washington, DC 20375 USA
[2] USN Acad, Dept Phys, Annapolis, MD 21402 USA
关键词
ELECTROCHEMICAL CAPACITORS; OXIDE; RUO2; ELECTRODES; MECHANISM;
D O I
10.1021/nl900528q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Subambient thermal decomposition of ruthenium tetroxide from nonaqueous solution onto porous SiO2 substrates creates 2-3 nm thick coatings of RuO2 that cover the convex silica walls comprising the open, porous structure. The physical properties of the resultant self-wired nanoscale ruthenia significantly differ depending on the nature of the porous support. Previously reported RuO2-modified SiO2 aerogels display electron conductivity of 5 x 10(-4) S cm(-1) (as normalized to the geometric factor of the insulating substrate, not the conducting ruthenia phase), whereas RuO2-modified silica filter paper at similar to 5 wt % RuO2 exhibits similar to 0.5 S cm(-1). Electron conduction through the ruthenia phase as examined from -160 to 260 degrees C requires minimal activation energy, only 8 meV, from 20 to 260 degrees C. The RuO2(SiO2) fiber membranes are electrically addressable, capable of supporting fast electron-transfer reactions, express an electrochemical surface area of similar to 90 m(2) g(-1) RuO2, and exhibit energy storage in which 90% of the total electron-proton charge is stored at the outer surface of the ruthenia phase. The electrochemical capacitive response indicates that the nanocrystalline RuO2 coating can be considered to be a single-unit-thick layer of the conductive oxide, as physically stabilized by the supporting silica fiber.
引用
收藏
页码:2316 / 2321
页数:6
相关论文
共 24 条
[1]   Charge transfer on the nanoscale: Current status [J].
Adams, DM ;
Brus, L ;
Chidsey, CED ;
Creager, S ;
Creutz, C ;
Kagan, CR ;
Kamat, PV ;
Lieberman, M ;
Lindsay, S ;
Marcus, RA ;
Metzger, RM ;
Michel-Beyerle, ME ;
Miller, JR ;
Newton, MD ;
Rolison, DR ;
Sankey, O ;
Schanze, KS ;
Yardley, J ;
Zhu, XY .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (28) :6668-6697
[2]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[3]  
Conway B. E., 1999, ELECTROCHEMICAL SUPE
[4]   THE ELECTRONIC-STRUCTURE OF BI2-XGDXRU2O7 AND RUO2 - A STUDY BY ELECTRON-SPECTROSCOPY [J].
COX, PA ;
GOODENOUGH, JB ;
TAVENER, PJ ;
TELLES, D ;
EGDELL, RG .
JOURNAL OF SOLID STATE CHEMISTRY, 1986, 62 (03) :360-370
[5]   Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering [J].
Dmowski, W ;
Egami, T ;
Swider-Lyons, KE ;
Love, CT ;
Rolison, DR .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (49) :12677-12683
[6]  
Emsley J., 1989, ELEMENTS
[7]   ELECTRON-TRANSPORT PROPERTIES IN RUO(2) RUTILE [J].
GLASSFORD, KM ;
CHELIKOWSKY, JR .
PHYSICAL REVIEW B, 1994, 49 (11) :7107-7114
[8]   SPECTROSCOPIC ELLIPSOMETRY OF RUO2 FILMS PREPARED BY METALORGANIC CHEMICAL-VAPOR-DEPOSITION [J].
HONES, P ;
GERFIN, T ;
GRATZEL, M .
APPLIED PHYSICS LETTERS, 1995, 67 (21) :3078-3080
[9]  
Iles G.S., 1967, PLATINUM METALS REV, V11, P126
[10]   Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide [J].
Jow, TR ;
Zheng, JP .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) :49-52