Insulin signaling and action in fat cells: Associations with insulin resistance and type 2 diabetes

被引:86
作者
Smith, U [1 ]
Axelsen, M [1 ]
Carvalho, E [1 ]
Eliasson, B [1 ]
Jansson, PA [1 ]
Wesslau, C [1 ]
机构
[1] Sahlgrens Univ Hosp, Dept Internal Med, Lundberg Lab Diabet Res, S-41345 Gothenburg, Sweden
来源
THE METABOLIC SYNDROME X: CONVERGENCE OF INSULIN RESISTANCE, GLUCOSE INTOLERANCE, HYPERTENSION, OBESITY, AND DYSLIPIDEMIAS-SEARCHING FOR THE UNDERLYING DEFECTS | 1999年 / 892卷
关键词
D O I
10.1111/j.1749-6632.1999.tb07790.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Adipose tissue only accounts for a relatively small proportion (<10%) of the peripheral glucose utilization in response to insulin. However, the fat cells may still play an important role in insulin resistance and Syndrome X through, for instance, its endocrine functions (production of leptin, TNF alpha, PAI-1, etc.) and involvement in lipid metabolism (FPA release and hydrolysis of triglycerides). The fat cells are also highly sensitive to insulin and may thus be used to elucidate molecular mechanisms for insulin resistance in man. Examinations of the intracellular signaling mechanisms for insulin in fat cells from individuals with Type 2 diabetes revealed markedly lower insulin-stimulated PI3-kinase activity. This was due to a pronounced reduction in the cellular expression of the docking protein, IRS 1, whereas expression of IRS 2 was normal. However, IRS 2-associated PI3-kinase activity was only approximately one-third of that found to be associated with IRS 1 in normal cells. Downstream activation and serine phosphorylation of PKB/Akt by insulin were also markedly reduced in Type 2 diabetes. Furthermore, the dose-response curve for this effect of insulin was similar to that for glucose transport in both normal and Type 2 diabetic cells. Thus, these data show that both PI3-kinase and PKB activation by insulin are markedly reduced in Type 2 diabetes. We also examined whether an attenuated activation of PI3-kinase by insulin can be seen in non-diabetic insulin-resistant states. Approximately 30% of healthy subjects with at least two first-degree relatives with Type 2 diabetes exhibited perturbations in IRS-1 expression and signaling. These individuals were characterized by insulin resistance as well as other markers of Syndrome X. Thus, impaired IRS-1 expression and downstream signaling events in fat cells in response to insulin are associated with insulin resistance and Syndrome X.
引用
收藏
页码:119 / 126
页数:8
相关论文
共 28 条
[1]  
Alberti KGMM, 1998, DIABETIC MED, V15, P539, DOI 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO
[2]  
2-S
[3]   ALTERNATIVE PATHWAY OF INSULIN SIGNALING IN MICE WITH TARGETED DISRUPTION OF THE IRS-1 GENE [J].
ARAKI, E ;
LIPES, MA ;
PATTI, ME ;
BRUNING, JC ;
HAAG, B ;
JOHNSON, RS ;
KAHN, CR .
NATURE, 1994, 372 (6502) :186-190
[4]   Postprandial hypertriglyceridemia and insulin resistance in normoglycemic first-degree relatives of patients with type 2 diabetes [J].
Axelsen, M ;
Smith, U ;
Eriksson, JW ;
Taskinen, MR ;
Jansson, PA .
ANNALS OF INTERNAL MEDICINE, 1999, 131 (01) :27-31
[5]   METABOLIC AND GENETIC-CHARACTERIZATION OF PREDIABETIC STATES - SEQUENCE OF EVENTS LEADING TO NON-INSULIN-DEPENDENT DIABETES-MELLITUS [J].
BECKNIELSEN, H ;
GROOP, LC .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 94 (05) :1714-1721
[6]   Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation [J].
Bjornholm, M ;
Kawano, Y ;
Lehtihet, M ;
Zierath, JR .
DIABETES, 1997, 46 (03) :524-527
[7]  
BULANGU L, 1990, AM J PHYSIOL, V258, P964
[8]   Insulin increases the association of akt-2 with Glut4-containing vesicles [J].
Calera, MR ;
Martinez, C ;
Liu, HZ ;
El Jack, AK ;
Birnbaum, MJ ;
Pilch, PF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (13) :7201-7204
[9]   Modulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase [J].
DeFea, K ;
Roth, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (50) :31400-31406
[10]   Mechanisms and consequences of activation of protein kinase B/Akt [J].
Downward, J .
CURRENT OPINION IN CELL BIOLOGY, 1998, 10 (02) :262-267