A new method for measuring uncertainty and fuzziness in rough set theory

被引:346
作者
Liang, JY [1 ]
Chin, KS
Dang, CY
Yam, RCM
机构
[1] Shanxi Univ, Dept Comp Sci, Taiyuan 030006, Peoples R China
[2] City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
rough sets; information entropy; uncertainty; fuzziness; rough classification; data analysis;
D O I
10.1080/0308107021000013635
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Based on the complement behavior of information gain, a new definition of information entropy is proposed along with its justification in rough set theory. Some properties of this definition imply those of Shannon's entropy. Based on the new information entropy, conditional entropy and mutual information are then introduced and applied to knowledge bases. The new information entropy is proved to also be a fuzzy entropy.
引用
收藏
页码:331 / 342
页数:12
相关论文
共 18 条
[1]  
[Anonymous], 1998, UNCERTAINTY BASED IN
[2]   Information-theoretic measures of uncertainty for rough sets and rough relational databases [J].
Beaubouef, T ;
Petry, FE ;
Arora, G .
INFORMATION SCIENCES, 1998, 109 (1-4) :185-195
[3]   DEFINITION OF NONPROBABILISTIC ENTROPY IN SETTING OF FUZZY SETS THEORY [J].
DELUCA, A ;
TERMINI, S .
INFORMATION AND CONTROL, 1972, 20 (04) :301-&
[4]   ROUGH FUZZY-SETS AND FUZZY ROUGH SETS [J].
DUBOIS, D ;
PRADE, H .
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 1990, 17 (2-3) :191-209
[5]   Uncertainty measures of rough set prediction [J].
Düntsch, I ;
Gediga, G .
ARTIFICIAL INTELLIGENCE, 1998, 106 (01) :109-137
[6]   Transmission of information [J].
Hartley, RVL .
BELL SYSTEM TECHNICAL JOURNAL, 1928, 7 (03) :535-563
[7]  
Liang JY, 2000, PROCEEDINGS OF THE 3RD WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-5, P2526, DOI 10.1109/WCICA.2000.862501
[8]  
LIANG JY, 2000, P C INT INF PROC 16, P528
[9]  
Lingras PJ, 1998, J AM SOC INFORM SCI, V49, P415, DOI 10.1002/(SICI)1097-4571(19980415)49:5<415::AID-ASI4>3.0.CO
[10]  
2-Z