Models and measurements for the transmission of submicron-width waveguide bends defined in two-dimensional photonic crystals

被引:49
作者
Benisty, H [1 ]
Olivier, S
Weisbuch, C
Agio, M
Kafesaki, M
Soukoulis, CM
Qiu, M
Swillo, M
Karlsson, A
Jaskorzynska, B
Talneau, A
Moosburger, J
Kamp, M
Forchel, A
Ferrini, R
Houdré, R
Oesterle, U
机构
[1] Ecole Polytech, Phys Mat Condensee Lab, CNRS, UMR 7643, F-91128 Palaiseau, France
[2] Univ Pavia, Dipartimento Fis A Volta, I-27100 Pavia, Italy
[3] Iowa State Univ, Ames Lab, Ames, IA 50011 USA
[4] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[5] Res Ctr Crete, Iraklion 71110, Crete, Greece
[6] Royal Inst Technol, Dept Microelect & Informat Technol, S-16440 Kista, Sweden
[7] CNRS, Lab Phys & Nanostruct, F-92225 Bagneux, France
[8] Univ Wurzburg, D-97074 Wurzburg, Germany
[9] Ecole Polytech Fed Lausanne, Inst Micro & Optoelect, CH-1015 Lausanne, Switzerland
关键词
integrated optics; photonic crystals (PCs); waveguides;
D O I
10.1109/JQE.2002.1017587
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
One of the essential building-blocks of miniature photonic crystal (PC)-based photonic integrated circuits (PICs) is the sharp bend. Our group has focused on the 2-D photonic crystal based on a triangular lattice of holes perforating a standard heterostructure. The latter, GaAlAs-based or InP-based, is vertically a monomode waveguide. We consider essentially one or two 60 bends defined by one to five missing rows, spanning both cases of monomode and multimode channel waveguides. From intensive modeling and various experimental measurements (both on GaAs and InP), we point out the origin of the present level of bend insertion losses and discuss the merits of the many roads open for improved design.
引用
收藏
页码:770 / 785
页数:16
相关论文
共 44 条
[1]   Observation of light propagation in photonic crystal optical waveguides with bends [J].
Baba, T ;
Fukaya, N ;
Yonekura, J .
ELECTRONICS LETTERS, 1999, 35 (08) :654-655
[2]   Clear correspondence between theoretical and experimental light propagation characteristics in photonic crystal waveguides [J].
Baba, T ;
Fukaya, N ;
Motegi, A .
ELECTRONICS LETTERS, 2001, 37 (12) :761-762
[3]   Modal analysis of optical guides with two-dimensional photonic band-gap boundaries [J].
Benisty, H .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (10) :7483-7492
[4]   Optical and confinement properties of two-dimensional photonic crystals [J].
Benisty, H ;
Weisbuch, C ;
Labilloy, D ;
Rattier, M ;
Smith, CJM ;
Krauss, TF ;
De la Rue, RM ;
Houdré, R ;
Oesterle, U ;
Jouanin, C ;
Cassagne, D .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1999, 17 (11) :2063-2077
[5]   Radiation losses of waveguide-based two-dimensional photonic crystals:: Positive role of the substrate [J].
Benisty, H ;
Labilloy, D ;
Weisbuch, C ;
Smith, CJM ;
Krauss, TF ;
Cassagne, D ;
Béraud, A ;
Jouanin, C .
APPLIED PHYSICS LETTERS, 2000, 76 (05) :532-534
[6]  
BENISTY H, 2001, PHOTONIC CRYSTAL LIG
[7]  
BENISTY H, IN PRESS OPT QUANTUM
[8]   A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES [J].
BERENGER, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :185-200
[9]   Out-of-plane scattering in photonic crystal slabs [J].
Bogaerts, W ;
Bienstman, P ;
Taillaert, D ;
Baets, R ;
De Zutter, D .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2001, 13 (06) :565-567
[10]   Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ=1.55 μm wavelengths [J].
Chow, E ;
Lin, SY ;
Wendt, JR ;
Johnson, SG ;
Joannopoulos, JD .
OPTICS LETTERS, 2001, 26 (05) :286-288