Density functional theory study of graphite oxide for different oxidation levels

被引:234
作者
Lahaye, R. J. W. E. [1 ]
Jeong, H. K. [1 ]
Park, C. Y. [1 ]
Lee, Y. H. [1 ]
机构
[1] Sungkyunkwan Univ, Univ Coll, Dept Phys, Dept Energy Sci,Ctr Nanotubes & Nanostructured Co, Suwon 440746, South Korea
关键词
ab initio calculations; bonds (chemical); density functional theory; elemental semiconductors; graphite; insulating materials; oxidation; GENERALIZED GRADIENT APPROXIMATION; TOTAL-ENERGY CALCULATIONS; OXYGEN-ADSORPTION; GRAPHENE; DYNAMICS; ROUTE; C-13; GAS;
D O I
10.1103/PhysRevB.79.125435
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Graphite oxide constitutes a hexagonal carbon network with oxygen atoms in carbon-oxide ether ring formations and hydroxyl molecules. We have studied graphite oxide with a first-principles density functional theory calculation for different oxidation levels. The oxygen atoms form 1,2-ether groups (epoxides) on the carbon grid, with on the adjacent carbon atoms, but at the opposite side of the carbon plane, the hydroxyl molecules. Graphite oxide cannot have 1,3-ether oxygens because of the higher formation energy. The transverse wrinkling of the carbon grid is about 0.5 A, mostly due to the deformation around the hydroxyl bonds, yet the in-plane lattice axes retain the hexagonal features of graphene. A stable graphite oxide structure requires hydroxyl molecules to relax the tension on the carbon grid from the 1,2-ether oxygens. At a low degree of oxidation, graphite oxide is a semiconductor, but when the oxidation is saturated, it turns into an insulator.
引用
收藏
页数:8
相关论文
共 39 条
[1]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Modeling of graphite oxide [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (32) :10697-10701
[4]  
Brodie B.C., 1859, Philos. Trans. R. Soc. Lond., V149, P249, DOI [10.1098/rspl.1859.0007, DOI 10.1098/RSTL.1859.0013]
[5]   Water dynamics in graphite oxide investigated with neutron scattering [J].
Buchsteiner, Alexandra ;
Lerf, Anton ;
Pieper, Joerg .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (45) :22328-22338
[6]   Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide [J].
Cai, Weiwei ;
Piner, Richard D. ;
Stadermann, Frank J. ;
Park, Sungjin ;
Shaibat, Medhat A. ;
Ishii, Yoshitaka ;
Yang, Dongxing ;
Velamakanni, Aruna ;
An, Sung Jin ;
Stoller, Meryl ;
An, Jinho ;
Chen, Dongmin ;
Ruoff, Rodney S. .
SCIENCE, 2008, 321 (5897) :1815-1817
[7]   UNTERSUCHUNGEN ZUR STRUKTUR DES GRAPHITOXYDS [J].
CLAUSS, A ;
PLASS, R ;
BOEHM, HP ;
HOFMANN, U .
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1957, 291 (5-6) :205-220
[8]   Forces in molecules [J].
Feynman, RP .
PHYSICAL REVIEW, 1939, 56 (04) :340-343
[9]   Oxygen adsorption on graphite and nanotubes [J].
Giannozzi, P ;
Car, R ;
Scoles, G .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (03) :1003-1006
[10]   A chemical route to graphene for device applications [J].
Gilje, Scott ;
Han, Song ;
Wang, Minsheng ;
Wang, Kang L. ;
Kaner, Richard B. .
NANO LETTERS, 2007, 7 (11) :3394-3398