Analysis of a population genetics model with mutation, selection, and pleiotropy

被引:17
作者
Coppersmith, SN
Blank, RD
Kadanoff, LP
机构
[1] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[2] Hosp Special Surg, New York, NY 10021 USA
[3] Cornell Univ, Coll Med, Dept Med, New York, NY USA
关键词
population genetics; pleiotropy; quantum mechanics;
D O I
10.1023/A:1004678222262
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate a population genetics model introduced by Waxman and Peck((1)) incorporating mutation, selection, and pleiotropy (one gene affecting several unrelated traits). Thr population is infinite, and continuous variation of genotype is allowed. Nonetheless, Waxman and peck showed that if each gene affects three or more traits, then the steady-state solution of the model can have a nonzero traction of the population with identical alleles. We use a recursion technique to calculate the distribution of alleles at finite times as well as in the infinite-time limit, We map Waxman and Peck's model into the mean-field theory for Bose condensation, and a variant of the model onto a bound-state problem in quantum theory. These mappings aid in delineating the region of parameter space in which the unique genotype occurs. We also discuss our attempts to correlate the statistics of DNA-sequence variation with the degree of pleiotropy of various genes.
引用
收藏
页码:429 / 457
页数:29
相关论文
共 38 条
[1]  
Abramowitz M., 1972, Handbook of mathematical functions with formulas, graphs, and mathematical tables, P807
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]  
[Anonymous], 1974, GENETIC BASIS EVOLUT
[4]  
BARTON NH, 1989, ANNU REV GENET, V23, P337, DOI 10.1146/annurev.ge.23.120189.002005
[5]  
BURGER R, 1986, J MATH BIOL, V24, P341, DOI 10.1007/BF00275642
[6]   Stationary distributions under mutation-selection balance: Structure and properties [J].
Burger, R ;
Bomze, IM .
ADVANCES IN APPLIED PROBABILITY, 1996, 28 (01) :227-251
[7]   MUTATION LOAD AND MUTATION-SELECTION-BALANCE IN QUANTITATIVE GENETIC-TRAITS [J].
BURGER, R ;
HOFBAUER, J .
JOURNAL OF MATHEMATICAL BIOLOGY, 1994, 32 (03) :193-218
[8]  
BURGER R, 1986, MATH BIOSCI, V91, P67
[9]  
CARRIER GF, 1983, FUNCTIONS COMPLEX VA, P192
[10]   The variant call format and VCFtools [J].
Danecek, Petr ;
Auton, Adam ;
Abecasis, Goncalo ;
Albers, Cornelis A. ;
Banks, Eric ;
DePristo, Mark A. ;
Handsaker, Robert E. ;
Lunter, Gerton ;
Marth, Gabor T. ;
Sherry, Stephen T. ;
McVean, Gilean ;
Durbin, Richard .
BIOINFORMATICS, 2011, 27 (15) :2156-2158